Analisis Sentimen Program Makan Siang Gratis di Twitter/X menggunakan Metode BI-LSTM
DOI:
https://doi.org/10.29408/edumatic.v9i1.29725Keywords:
sentiment analysis, bi-lstm, free lunch program, word2vecAbstract
The free lunch program became a widely discussed topic on social media, reflecting public opinion towards the policy. This research aims to analyze public sentiment towards free lunch program to evaluate the policy's effectiveness and understand public perception. Data was collected through web crawling techniques on the Twitter/X platform, resulting in 7,441 data. Processing stages include preprocessing, sentiment labeling using VADER, keyword visualization with wordcloud, and application of word embedding using Word2Vec. The oversampling technique is used to overcome data imbalance. Sentiment classification was developed using Bi-LSTM and evaluated with accuracy, precision, recall, and F1-score. The developed Bi-LSTM model achieved 88.75% accuracy, with 88.9% precision, 88.8% recall, and 88.8% F1-score. Analysis results show that the majority of public responses are positive or neutral, although there were negative sentiments that highlighted potential problems such as corruption and increasing national debt. These results provide insight into public opinion on the free lunch policy and demonstrate the effectiveness of the Bi-LSTM model in social media sentiment classification.
References
Alghifari, D. R., Edi, M., & Firmansyah, L. (2022). Implementasi Bidirectional LSTM untuk Analisis Sentimen Terhadap Layanan Grab Indonesia. Jurnal Manajemen Informatika (JAMIKA), 12(2), 89–99. https://doi.org/10.34010/jamika.v12i2.7764
Arrasyid, R. M., Putera, D. E., & Yusuf, A. Y. P. (2021). Analisis Sentimen Review Pembelian Produk di Marketplace Shopee Menggunakan Pendekatan Natural Language Processing. Jurnal Tekno Kompak, 18(2), 319–330. https://doi.org/10.33365/jtk.v18i2.3813
Aulia, T. M. P., Arifin, N., & Mayasari, R. (2021). Perbandingan Kernel Support Vector Machine (Svm) Dalam Penerapan Analisis Sentimen Vaksinisasi Covid-19. SINTECH (Science and Information Technology) Journal, 4(2), 139-145. https://doi.org/10.31598/sintechjournal.v4i2.762
Furqon, I. N., & Soyusiawaty, D. (2025). The Role of VADER and SentiWordNet Labeling in Naïve Bayes Accuracy for Sentiment Analysis of Rice Price Increases. Aviation Electronics, Information Technology, Telecommunications, Electricals, and Controls (AVITEC), 7(1), 73–85. https://doi.org/http://dx.doi.org/10.28989/avitec.v7i1.2806
Handayani, A., & Zufria, I. (2023). Analisis Sentimen Terhadap Bakal Capres RI 2024 di Twitter Menggunakan Algoritma SVM. Journal of Information System Research (JOSH), 5(1), 53–63. https://doi.org/10.47065/josh.v5i1.4379
Hidayat, E. Y., Hardiansyah, R. W., & Affandy, A. (2021). Analisis Sentimen Twitter untuk Menilai Opini Terhadap Perusahaan Publik Menggunakan Algoritma Deep Neural Network. Jurnal Nasional Teknologi Dan Sistem Informasi, 7(2), 108–118. https://doi.org/10.25077/teknosi.v7i2.2021.108-118
Husen, R. A., Astuti, R., Marlia, L., Rahmaddeni, R., & Efrizoni, L. (2023). Analisis Sentimen Opini Publik pada Twitter Terhadap Bank BSI Menggunakan Algoritma Machine Learning. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 3(2), 211–218. https://doi.org/10.57152/malcom.v3i2.901
Kamarula, M. R. F., & Rochmawati, N. (2022). Perbandingan CNN dan Bi-LSTM pada Analisis Sentimen dan Emosi Masyarakat Indonesia Di Media Sosial Twitter Selama Pandemik Covid-19 yang Menggunakan Metode Word2vec. Journal of Informatics and Computer Science (JINACS), 04, 219–228. https://doi.org/10.26740/jinacs.v4n02.p219-228
Lestandy M., Abdurrahim A., & Syafa’ah, L. (2021). Analisis Sentimen Tweet Vaksin COVID-19 Menggunakan Recurrent Neural Network dan Naïve Bayes. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(4), 802–808. https://doi.org/10.29207/resti.v5i4.3308
Mutmainah, S., Hatta Fudholi, D., & Hidayat, S. (2023). Analisis Sentimen dan Pemodelan Topik Aplikasi Telemedicine Pada Google Play Menggunakan BiLSTM dan LDA. Jurnal Media Informatika Budidarma, 7, 312–323. https://doi.org/10.30865/mib.v7i1.5486
Novianti, D. N., Shiddieq, D. F., Roji, F. F., & Susilawati, W. (2024). Komparasi Algoritma Support Vector Machine dan Naïve Bayes untuk Analisis Sentimen pada Metaverse. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(1), 231–239. https://doi.org/10.57152/malcom.v4i1.1061
Puteri, D. I. (2023). Implementasi Long Short Term Memory (LSTM) dan Bidirectional Long Short Term Memory (BiLSTM) Dalam Prediksi Harga Saham Syariah. Euler : Jurnal Ilmiah Matematika, Sains Dan Teknologi, 11(1), 35–43. https://doi.org/10.34312/euler.v11i1.19791
Rahma, F., Triana, D., Amali, M. T. (2024). Analisis Framing Pemberitaan Program Kerja Makan Siang Gratis Prabowo-Gibran Dalam Media Online Liputan6 . Com Dan Republika . co . id. Jurnal Ilmu Sosial dan Ilmu Politik (JISIP), 13(3), 603–614. https://doi.org/10.33366/jisip.v13i3.3231
Rahman, M. Z., Sari, Y. A., & Yudistira, N. (2021). Analisis Sentimen Tweet COVID-19 menggunakan Word Embedding dan Metode Long Short-Term Memory (LSTM). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 5(11), 5120–5127.
Saputra, A., Sigitta Hariyono, R. C., & Saraswati, N. M. (2024). Analisis Sentimen Pengguna Aplikasi MyPertamina Menggunakan Algoritma Bidirectional Long Short Term Memory. Jurnal Eksplora Informatika, 13(2), 156–163. https://doi.org/10.30864/eksplora.v13i2.973
Sari, S. M. (2024). Analisis Sentimen Pada Ulasan Film Menggunakan Teknik Machine Learning. Jurnal Dunia Data, 05(02), 126–132.
Sitanggang, A., Umaidah, Y., Umaidah, Y., Adam, R. I., & Adam, R. I. (2024). Analisis Sentimen Masyarakat Terhadap Program Makan Siang Gratis Pada Media Sosial X Menggunakan Algoritma Naïve Bayes. Jurnal Informatika Dan Teknik Elektro Terapan, 12(3), 2755-2762. https://doi.org/10.23960/jitet.v12i3.4902
Subowo, E., Adi Artanto, F., Putri, I., & Umaedi, W. (2022). BLTSM untuk analisis sentimen berbasis aspek pada aplikasi belanja online dengan cicilan. Jurnal Fasilkom, 12(2), 132–140. https://doi.org/10.37859/jf.v12i2.3759
Sutrisno, H., & Winarsih, N. A. S. (2024). Klasifikasi Kategori Produk untuk Manajemen Keuangan Remaja menggunakan Algoritma Long Short-Term Memory. Edumatic: Jurnal Pendidikan Informatika, 8(2), 685-693. https://doi.org/10.29408/edumatic.v8i2.27959
Utami, H. (2022). Analisis Sentimen dari Aplikasi Shopee Indonesia Menggunakan Metode Recurrent Neural Network. Indonesian Journal of Applied Statistics, 5(1), 31-38. https://doi.org/10.13057/ijas.v5i1.56825
Wardianto, W., Farikhin, F., & Kusumo Nugraheni, D. M. (2023). Analisis Sentimen Berbasis Aspek Ulasan Pelanggan Restoran Menggunakan LSTM Dengan Adam Optimizer. JOINTECS (Journal of Information Technology and Computer Science), 8(2), 679-686. https://doi.org/10.31328/jointecs.v8i2.4737
Yusanto, Y., & Akbar, M. (2024). Analisis Sentimen Jogja Darurat Sampah di Twitter menggunakan Ekstraksi Fitur Model Word2Vec dan Convolutional Neural Network. TIN: Terapan Informatika Nusantara, 4(10), 679–688. https://doi.org/10.47065/tin.v4i10.4952
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Dimas Thaqif Attaulah, Dewi Soyusiawaty

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Semua tulisan pada jurnal ini adalah tanggung jawab penuh penulis. Edumatic: Jurnal Pendidikan Informatika bisa diakses secara free (gratis) tanpa ada pungutan biaya, sesuai dengan lisensi creative commons yang digunakan.

This work is licensed under a Lisensi a Creative Commons Attribution-ShareAlike 4.0 International License.