Analisis Sentimen Program Makan Siang Gratis di Twitter/X menggunakan Metode BI-LSTM

Authors

DOI:

https://doi.org/10.29408/edumatic.v9i1.29725

Keywords:

sentiment analysis, bi-lstm, free lunch program, word2vec

Abstract

The free lunch program became a widely discussed topic on social media, reflecting public opinion towards the policy. This research aims to analyze public sentiment towards free lunch program to evaluate the policy's effectiveness and understand public perception. Data was collected through web crawling techniques on the Twitter/X platform, resulting in 7,441 data. Processing stages include preprocessing, sentiment labeling using VADER, keyword visualization with wordcloud, and application of word embedding using Word2Vec. The oversampling technique is used to overcome data imbalance. Sentiment classification was developed using Bi-LSTM and evaluated with accuracy, precision, recall, and F1-score. The developed Bi-LSTM model achieved 88.75% accuracy, with 88.9% precision, 88.8% recall, and 88.8% F1-score. Analysis results show that the majority of public responses are positive or neutral, although there were negative sentiments that highlighted potential problems such as corruption and increasing national debt. These results provide insight into public opinion on the free lunch policy and demonstrate the effectiveness of the Bi-LSTM model in social media sentiment classification.

References

Alghifari, D. R., Edi, M., & Firmansyah, L. (2022). Implementasi Bidirectional LSTM untuk Analisis Sentimen Terhadap Layanan Grab Indonesia. Jurnal Manajemen Informatika (JAMIKA), 12(2), 89–99. https://doi.org/10.34010/jamika.v12i2.7764

Arrasyid, R. M., Putera, D. E., & Yusuf, A. Y. P. (2021). Analisis Sentimen Review Pembelian Produk di Marketplace Shopee Menggunakan Pendekatan Natural Language Processing. Jurnal Tekno Kompak, 18(2), 319–330. https://doi.org/10.33365/jtk.v18i2.3813

Aulia, T. M. P., Arifin, N., & Mayasari, R. (2021). Perbandingan Kernel Support Vector Machine (Svm) Dalam Penerapan Analisis Sentimen Vaksinisasi Covid-19. SINTECH (Science and Information Technology) Journal, 4(2), 139-145. https://doi.org/10.31598/sintechjournal.v4i2.762

Furqon, I. N., & Soyusiawaty, D. (2025). The Role of VADER and SentiWordNet Labeling in Naïve Bayes Accuracy for Sentiment Analysis of Rice Price Increases. Aviation Electronics, Information Technology, Telecommunications, Electricals, and Controls (AVITEC), 7(1), 73–85. https://doi.org/http://dx.doi.org/10.28989/avitec.v7i1.2806

Handayani, A., & Zufria, I. (2023). Analisis Sentimen Terhadap Bakal Capres RI 2024 di Twitter Menggunakan Algoritma SVM. Journal of Information System Research (JOSH), 5(1), 53–63. https://doi.org/10.47065/josh.v5i1.4379

Hidayat, E. Y., Hardiansyah, R. W., & Affandy, A. (2021). Analisis Sentimen Twitter untuk Menilai Opini Terhadap Perusahaan Publik Menggunakan Algoritma Deep Neural Network. Jurnal Nasional Teknologi Dan Sistem Informasi, 7(2), 108–118. https://doi.org/10.25077/teknosi.v7i2.2021.108-118

Husen, R. A., Astuti, R., Marlia, L., Rahmaddeni, R., & Efrizoni, L. (2023). Analisis Sentimen Opini Publik pada Twitter Terhadap Bank BSI Menggunakan Algoritma Machine Learning. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 3(2), 211–218. https://doi.org/10.57152/malcom.v3i2.901

Kamarula, M. R. F., & Rochmawati, N. (2022). Perbandingan CNN dan Bi-LSTM pada Analisis Sentimen dan Emosi Masyarakat Indonesia Di Media Sosial Twitter Selama Pandemik Covid-19 yang Menggunakan Metode Word2vec. Journal of Informatics and Computer Science (JINACS), 04, 219–228. https://doi.org/10.26740/jinacs.v4n02.p219-228

Lestandy M., Abdurrahim A., & Syafa’ah, L. (2021). Analisis Sentimen Tweet Vaksin COVID-19 Menggunakan Recurrent Neural Network dan Naïve Bayes. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(4), 802–808. https://doi.org/10.29207/resti.v5i4.3308

Mutmainah, S., Hatta Fudholi, D., & Hidayat, S. (2023). Analisis Sentimen dan Pemodelan Topik Aplikasi Telemedicine Pada Google Play Menggunakan BiLSTM dan LDA. Jurnal Media Informatika Budidarma, 7, 312–323. https://doi.org/10.30865/mib.v7i1.5486

Novianti, D. N., Shiddieq, D. F., Roji, F. F., & Susilawati, W. (2024). Komparasi Algoritma Support Vector Machine dan Naïve Bayes untuk Analisis Sentimen pada Metaverse. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(1), 231–239. https://doi.org/10.57152/malcom.v4i1.1061

Puteri, D. I. (2023). Implementasi Long Short Term Memory (LSTM) dan Bidirectional Long Short Term Memory (BiLSTM) Dalam Prediksi Harga Saham Syariah. Euler : Jurnal Ilmiah Matematika, Sains Dan Teknologi, 11(1), 35–43. https://doi.org/10.34312/euler.v11i1.19791

Rahma, F., Triana, D., Amali, M. T. (2024). Analisis Framing Pemberitaan Program Kerja Makan Siang Gratis Prabowo-Gibran Dalam Media Online Liputan6 . Com Dan Republika . co . id. Jurnal Ilmu Sosial dan Ilmu Politik (JISIP), 13(3), 603–614. https://doi.org/10.33366/jisip.v13i3.3231

Rahman, M. Z., Sari, Y. A., & Yudistira, N. (2021). Analisis Sentimen Tweet COVID-19 menggunakan Word Embedding dan Metode Long Short-Term Memory (LSTM). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 5(11), 5120–5127.

Saputra, A., Sigitta Hariyono, R. C., & Saraswati, N. M. (2024). Analisis Sentimen Pengguna Aplikasi MyPertamina Menggunakan Algoritma Bidirectional Long Short Term Memory. Jurnal Eksplora Informatika, 13(2), 156–163. https://doi.org/10.30864/eksplora.v13i2.973

Sari, S. M. (2024). Analisis Sentimen Pada Ulasan Film Menggunakan Teknik Machine Learning. Jurnal Dunia Data, 05(02), 126–132.

Sitanggang, A., Umaidah, Y., Umaidah, Y., Adam, R. I., & Adam, R. I. (2024). Analisis Sentimen Masyarakat Terhadap Program Makan Siang Gratis Pada Media Sosial X Menggunakan Algoritma Naïve Bayes. Jurnal Informatika Dan Teknik Elektro Terapan, 12(3), 2755-2762. https://doi.org/10.23960/jitet.v12i3.4902

Subowo, E., Adi Artanto, F., Putri, I., & Umaedi, W. (2022). BLTSM untuk analisis sentimen berbasis aspek pada aplikasi belanja online dengan cicilan. Jurnal Fasilkom, 12(2), 132–140. https://doi.org/10.37859/jf.v12i2.3759

Sutrisno, H., & Winarsih, N. A. S. (2024). Klasifikasi Kategori Produk untuk Manajemen Keuangan Remaja menggunakan Algoritma Long Short-Term Memory. Edumatic: Jurnal Pendidikan Informatika, 8(2), 685-693. https://doi.org/10.29408/edumatic.v8i2.27959

Utami, H. (2022). Analisis Sentimen dari Aplikasi Shopee Indonesia Menggunakan Metode Recurrent Neural Network. Indonesian Journal of Applied Statistics, 5(1), 31-38. https://doi.org/10.13057/ijas.v5i1.56825

Wardianto, W., Farikhin, F., & Kusumo Nugraheni, D. M. (2023). Analisis Sentimen Berbasis Aspek Ulasan Pelanggan Restoran Menggunakan LSTM Dengan Adam Optimizer. JOINTECS (Journal of Information Technology and Computer Science), 8(2), 679-686. https://doi.org/10.31328/jointecs.v8i2.4737

Yusanto, Y., & Akbar, M. (2024). Analisis Sentimen Jogja Darurat Sampah di Twitter menggunakan Ekstraksi Fitur Model Word2Vec dan Convolutional Neural Network. TIN: Terapan Informatika Nusantara, 4(10), 679–688. https://doi.org/10.47065/tin.v4i10.4952

Downloads

Published

2025-04-18

How to Cite

Attaulah, D. T., & Soyusiawaty, D. (2025). Analisis Sentimen Program Makan Siang Gratis di Twitter/X menggunakan Metode BI-LSTM. Edumatic: Jurnal Pendidikan Informatika, 9(1), 294–303. https://doi.org/10.29408/edumatic.v9i1.29725