Pendekatan Multi-Input dalam Deteksi Kanker Kulit: Implementasi EfficientNetV2-B2 dan LightGBM

Authors

DOI:

https://doi.org/10.29408/edumatic.v9i1.29771

Keywords:

cnn algorithm, early detection, efficientnetv2, multi-input features, skin cancer

Abstract

Skin cancer is one of the types of cancer with a high prevalence rate, so early detection is very important to increase the chances of recovery. This study aims to develop a skin cancer detection model that combines image data and tabular data using EfficientNetV2-B2 for image feature extraction and LightGBM for tabular data prediction estimation. The ISIC 2024 dataset used consists of 401,059 images of skin lesions with tabular features, including age, gender, location, diameter, and shape of the lesions. Tabular data is processed with normalization and encoding to avoid bias. Image data is also processed with augmentation techniques from kerascv. This multi-input model combines image and tabular features using concatenation techniques, with a dense layer as the final output. Our findings show that the model's accuracy and AUC value reached 96% and 98%, with success in handling class imbalance using undersampling and oversampling techniques. This study shows that the combination of images and tabular data increases the accuracy of skin cancer detection by 2%, compared to conventional CNN models, which only achieve an accuracy of around 94%. Moreover, this model offers better computational efficiency compared to conventional CNN models. The main contribution of this research is the use of multi-input that complements visual information with clinical data for more accurate and efficient skin cancer detection.

References

Adzhani, A., Darusman, F., & Aryani, R. (2022). Kajian Efek Radiasi Ultraviolet terhadap Kulit. Bandung Conference Series: Pharmacy, 2(2), 106–112. https://doi.org/10.29313/bcsp.v2i2.3551

Akhter, A., Hasan, K. F., & Moni, M. A. (2022). Machine Learning-based Lung and Colon Cancer Detection using Deep Feature Extraction and Ensemble Learning. Expert System with Applications, 205, 0957-4174. https://doi.org/10.1016/j.eswa.2022.117695

Akinrinade, O., & Du, C. (2025). Skin cancer detection using deep machine learning techniques. Intelligence-Based Medicine, 11, 100191. https://doi.org/10.1016/j.ibmed.2024.100191

Bintang, Y. K., & Imaduddin, H. (2024). Pengembangan Model Deep Learning Untuk Deteksi Retinopati Diabetik Menggunakan Metode Transfer Learning. Jurnal Ilmiah Penelitian dan Pembelajaran Informatika 9(3), 1442–1455. https://doi.org/10.29100/jipi.v9i3.5588

Claret, S. A., Dharmian, J. P., & Manokar, A. M. (2024). Artificial intelligence-driven enhanced skin cancer diagnosis: leveraging convolutional neural networks with discrete wavelet transformation. Egyptian Journal of Medical Human Genetics, 25(1), 1-12. https://doi.org/10.1186/s43042-024-00522-5

Faruk, M., & Nafi’iyah, N. (2020). Klasifikasi Kanker Kulit Berdasarkan Fitur Tekstur, Fitur Warna Citra Menggunakan SVM dan KNN. Telematika, 13(2), 100–109. https://doi.org/10.35671/telematika.v13i2

Hameed, M., Zameer, A., & Zahoor Raja, M. A. (2024). A Comprehensive Systematic Review: Advancements in Skin Cancer Classification and Segmentation Using the ISIC Dataset. CMES - Computer Modeling in Engineering and Sciences, 140(3), 2131–2164. https://doi.org/10.32604/cmes.2024.050124

Hasan, M. R., Fatemi, M. I., Monirujjaman Khan, M., Kaur, M., & Zaguia, A. (2021). Comparative analysis of skin cancer (benign vs. malignant) detection using convolutional neural networks. Journal of Healthcare Engineering, 2021(1), 5895156. https://doi.org/10.1155/2021/5895156

Huang, M. L., & Liao, Y. C. (2023). Stacking Ensemble and ECA-EfficientNetV2 Convolutional Neural Networks on Classification of Multiple Chest Diseases Including COVID-19. Academic Radiology, 30(9), 1915–1935. https://doi.org/10.1016/j.acra.2022.11.027

Ichwan, M., & Hadi, I. S. (2023). Kinerja Model EfficientNetV2M dalam Klasifikasi Citra Tutupan dan Penggunaan Lahan. MIND (Multimedia Artificial Intelligent Networking Database) Journal, 8(2), 203-216.

Ieracitano, C., Morabito, F. C., Hussain, A., Suffian, M., & Mammone, N. (2025). TIxAI: A Trustworthiness Index for eXplainable AI in skin lesions classification. Neurocomputing, 630, 129701. https://doi.org/10.1016/j.neucom.2025.129701

Kingsley, J. (2023). Skin Biopsy: Types, Procedure, and What to Expect. Retrieved Maret 18, 2025, from The Kingsley Clinic website: https://thekingsleyclinic.com/resources/skin-biopsy-types-procedure-and-what-to-expect/

Hakim, L., Sari, Z., & Handhajani, H. (2021). Klasifikasi Citra Pigmen Kanker Kulit Menggunakan Convolutional Neural Network. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(2), 379–385. https://doi.org/10.29207/resti.v5i2.3001

Nisa, K., Informatika, P. S., & Bangsa, U. H. (2024). Klasifikasi Penyakit Gangguan Mental dengan Algoritma LightGBM. JURASIK (Jurnal Riset Sistem Informasi dan Teknik Informatika), 9(2), 1086–1094.

Oktora, M. Z., Haiga, Y., & Liana, N. (2023). Peningkatan Pengetahuan Mayarakat terhadap Pengaruh Paparan Sinar Matahari yang dapat Menyebabkan Kanker Kulit. Jurnal Pengabdian Masyarakat Kesehatan (JURABDIKES), 1(2), 28–31. https://doi.org/10.56260/jurabdikes.v1i2.105

Pratama, A. B., Herowati, R., & Ansory, H. M. (2021). Studi Docking Molekuler Senyawa Dalam Minyak Atsiri Pala (Myristica fragrans H.) Dan Senyawa Turunan Miristisin Terhadap Target Terapi Kanker Kulit. Majalah Farmaseutik, 17(2), 233-242. https://doi.org/10.22146/farmaseutik.v17i2.59297

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660

Tan, M., & Le, Q. V. (2021). EfficientNetV2: Smaller Models and Faster Training. Proceedings of Machine Learning Research, 139, 10096–10106.

Tarisa, R. E. D., Rustam, R., & Elmatris, E. (2022). Hubungan Jenis Pekerjaan dengan Kanker Kulit di RSUP Dr. M. Djamil Padang Tahun 2015 - 2020. Jurnal Ilmu Kesehatan Indonesia, 3(1), 67–73. https://doi.org/10.25077/jikesi.v3i1.739

Yang, T., & Ying, Y. (2022). AUC Maximization in the Era of Big Data and AI : A Survey. Association for Computing Machinery, 55(8), 0360-0300. https://doi.org/10.1145/3554729

Yogiswara, I. G. A. I., Saputra, H., & Ekawati, N. P. (2021). Karakteristik pasien kanker kulit non-melanoma di RSUP Sanglah pada periode tahun 2014 - 2018. Intisari Sains Medis, 12(2), 691–694. https://doi.org/10.15562/ism.v12i2.1080

Downloads

Published

2025-04-15

How to Cite

Ibad, M. A. K., & Winarno, S. (2025). Pendekatan Multi-Input dalam Deteksi Kanker Kulit: Implementasi EfficientNetV2-B2 dan LightGBM. Edumatic: Jurnal Pendidikan Informatika, 9(1), 179–188. https://doi.org/10.29408/edumatic.v9i1.29771