Pendekatan Multi-Input dalam Deteksi Kanker Kulit: Implementasi EfficientNetV2-B2 dan LightGBM
DOI:
https://doi.org/10.29408/edumatic.v9i1.29771Keywords:
cnn algorithm, early detection, efficientnetv2, multi-input features, skin cancerAbstract
Skin cancer is one of the types of cancer with a high prevalence rate, so early detection is very important to increase the chances of recovery. This study aims to develop a skin cancer detection model that combines image data and tabular data using EfficientNetV2-B2 for image feature extraction and LightGBM for tabular data prediction estimation. The ISIC 2024 dataset used consists of 401,059 images of skin lesions with tabular features, including age, gender, location, diameter, and shape of the lesions. Tabular data is processed with normalization and encoding to avoid bias. Image data is also processed with augmentation techniques from kerascv. This multi-input model combines image and tabular features using concatenation techniques, with a dense layer as the final output. Our findings show that the model's accuracy and AUC value reached 96% and 98%, with success in handling class imbalance using undersampling and oversampling techniques. This study shows that the combination of images and tabular data increases the accuracy of skin cancer detection by 2%, compared to conventional CNN models, which only achieve an accuracy of around 94%. Moreover, this model offers better computational efficiency compared to conventional CNN models. The main contribution of this research is the use of multi-input that complements visual information with clinical data for more accurate and efficient skin cancer detection.
References
Adzhani, A., Darusman, F., & Aryani, R. (2022). Kajian Efek Radiasi Ultraviolet terhadap Kulit. Bandung Conference Series: Pharmacy, 2(2), 106–112. https://doi.org/10.29313/bcsp.v2i2.3551
Akhter, A., Hasan, K. F., & Moni, M. A. (2022). Machine Learning-based Lung and Colon Cancer Detection using Deep Feature Extraction and Ensemble Learning. Expert System with Applications, 205, 0957-4174. https://doi.org/10.1016/j.eswa.2022.117695
Akinrinade, O., & Du, C. (2025). Skin cancer detection using deep machine learning techniques. Intelligence-Based Medicine, 11, 100191. https://doi.org/10.1016/j.ibmed.2024.100191
Bintang, Y. K., & Imaduddin, H. (2024). Pengembangan Model Deep Learning Untuk Deteksi Retinopati Diabetik Menggunakan Metode Transfer Learning. Jurnal Ilmiah Penelitian dan Pembelajaran Informatika 9(3), 1442–1455. https://doi.org/10.29100/jipi.v9i3.5588
Claret, S. A., Dharmian, J. P., & Manokar, A. M. (2024). Artificial intelligence-driven enhanced skin cancer diagnosis: leveraging convolutional neural networks with discrete wavelet transformation. Egyptian Journal of Medical Human Genetics, 25(1), 1-12. https://doi.org/10.1186/s43042-024-00522-5
Faruk, M., & Nafi’iyah, N. (2020). Klasifikasi Kanker Kulit Berdasarkan Fitur Tekstur, Fitur Warna Citra Menggunakan SVM dan KNN. Telematika, 13(2), 100–109. https://doi.org/10.35671/telematika.v13i2
Hameed, M., Zameer, A., & Zahoor Raja, M. A. (2024). A Comprehensive Systematic Review: Advancements in Skin Cancer Classification and Segmentation Using the ISIC Dataset. CMES - Computer Modeling in Engineering and Sciences, 140(3), 2131–2164. https://doi.org/10.32604/cmes.2024.050124
Hasan, M. R., Fatemi, M. I., Monirujjaman Khan, M., Kaur, M., & Zaguia, A. (2021). Comparative analysis of skin cancer (benign vs. malignant) detection using convolutional neural networks. Journal of Healthcare Engineering, 2021(1), 5895156. https://doi.org/10.1155/2021/5895156
Huang, M. L., & Liao, Y. C. (2023). Stacking Ensemble and ECA-EfficientNetV2 Convolutional Neural Networks on Classification of Multiple Chest Diseases Including COVID-19. Academic Radiology, 30(9), 1915–1935. https://doi.org/10.1016/j.acra.2022.11.027
Ichwan, M., & Hadi, I. S. (2023). Kinerja Model EfficientNetV2M dalam Klasifikasi Citra Tutupan dan Penggunaan Lahan. MIND (Multimedia Artificial Intelligent Networking Database) Journal, 8(2), 203-216.
Ieracitano, C., Morabito, F. C., Hussain, A., Suffian, M., & Mammone, N. (2025). TIxAI: A Trustworthiness Index for eXplainable AI in skin lesions classification. Neurocomputing, 630, 129701. https://doi.org/10.1016/j.neucom.2025.129701
Kingsley, J. (2023). Skin Biopsy: Types, Procedure, and What to Expect. Retrieved Maret 18, 2025, from The Kingsley Clinic website: https://thekingsleyclinic.com/resources/skin-biopsy-types-procedure-and-what-to-expect/
Hakim, L., Sari, Z., & Handhajani, H. (2021). Klasifikasi Citra Pigmen Kanker Kulit Menggunakan Convolutional Neural Network. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(2), 379–385. https://doi.org/10.29207/resti.v5i2.3001
Nisa, K., Informatika, P. S., & Bangsa, U. H. (2024). Klasifikasi Penyakit Gangguan Mental dengan Algoritma LightGBM. JURASIK (Jurnal Riset Sistem Informasi dan Teknik Informatika), 9(2), 1086–1094.
Oktora, M. Z., Haiga, Y., & Liana, N. (2023). Peningkatan Pengetahuan Mayarakat terhadap Pengaruh Paparan Sinar Matahari yang dapat Menyebabkan Kanker Kulit. Jurnal Pengabdian Masyarakat Kesehatan (JURABDIKES), 1(2), 28–31. https://doi.org/10.56260/jurabdikes.v1i2.105
Pratama, A. B., Herowati, R., & Ansory, H. M. (2021). Studi Docking Molekuler Senyawa Dalam Minyak Atsiri Pala (Myristica fragrans H.) Dan Senyawa Turunan Miristisin Terhadap Target Terapi Kanker Kulit. Majalah Farmaseutik, 17(2), 233-242. https://doi.org/10.22146/farmaseutik.v17i2.59297
Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660
Tan, M., & Le, Q. V. (2021). EfficientNetV2: Smaller Models and Faster Training. Proceedings of Machine Learning Research, 139, 10096–10106.
Tarisa, R. E. D., Rustam, R., & Elmatris, E. (2022). Hubungan Jenis Pekerjaan dengan Kanker Kulit di RSUP Dr. M. Djamil Padang Tahun 2015 - 2020. Jurnal Ilmu Kesehatan Indonesia, 3(1), 67–73. https://doi.org/10.25077/jikesi.v3i1.739
Yang, T., & Ying, Y. (2022). AUC Maximization in the Era of Big Data and AI : A Survey. Association for Computing Machinery, 55(8), 0360-0300. https://doi.org/10.1145/3554729
Yogiswara, I. G. A. I., Saputra, H., & Ekawati, N. P. (2021). Karakteristik pasien kanker kulit non-melanoma di RSUP Sanglah pada periode tahun 2014 - 2018. Intisari Sains Medis, 12(2), 691–694. https://doi.org/10.15562/ism.v12i2.1080
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 M. Azka Khoirul Ibad, Sri Winarno

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Semua tulisan pada jurnal ini adalah tanggung jawab penuh penulis. Edumatic: Jurnal Pendidikan Informatika bisa diakses secara free (gratis) tanpa ada pungutan biaya, sesuai dengan lisensi creative commons yang digunakan.

This work is licensed under a Lisensi a Creative Commons Attribution-ShareAlike 4.0 International License.