Implementasi Metode K-Nearest Neighbor (K-NN) untuk Analisis Sentimen Kepuasan Pengguna Aplikasi Teknologi Finansial FLIP
DOI:
https://doi.org/10.29408/edumatic.v6i1.5433Keywords:
financial, KNN, sentiment, technology, TF-IDFAbstract
The phenomenon of technological development can transform systems in various sectors to provide efficiency and convenience at a lower cost, including the financial sector. Flip is a financial service application that makes it easy to transfer money between banks without administrative fees. By the end of 2021, the Flip will have a 4.9 rating on the Google Play Store. The purpose of this study was to analyze user sentiment towards the Flip app to see if flip user ratings were as positive as the ratings received. This study uses a set of text mining processes on the user rating data of the Flip app on the Google Play Store, using the classification algorithm K-Nearest Neighbor with TF-IDF weighting. The results show that 77.67% of the test data are correctly classified as positive evaluation classes, with high accuracy and recall rates of 82.67% and 86.92%, respectively. In addition, from the results of applying the Flip user rating data classification method, the comparison between training data and test data is 80%:20%, and the classification accuracy using the K-Nearest Neighbor algorithm is 76.68%. User reviews of the Flip app have shown positive results, as well as the ratings obtained in the Google Play Store and the K-Nearest Neighbor algorithm, TF-IDF weighting process used to analyze user sentiment towards the Flip app.
References
Afuan, L. (2018). Sentimen Analisis Di Twitter (Studi Kasus: Resepsi Pernikahan Putri Presiden Ri Ke-7). Semnasteknomedia Online, 6(1), 1-6.
Amrullah, A. Z., Anas, A. S., & Hidayat, M. A. J. (2020). Analisis Sentimen Movie Review Menggunakan Naive Bayes Classifier Dengan Seleksi Fitur Chi Square. Jurnal BITe, 2(1), 40–44. https://doi.org/10.30812/bite.v2i1.804
Arifiyanti, A. A., & Wahyuni, E. D. (2020). SMOTE: Metode Penyeimbang Kelas pada Klasifikasi Data Mining. SCAN - Jurnal Teknologi Informasi dan Komunikasi, 15(1), 34–39. https://doi.org/10.33005/scan.v15i1.1850
Basryah, E. S., Erfina, A., & Warman, C. (2021). Analisis Sentimen Aplikasi Dompet Digital di Era 4.0 pada Masa Pendemi Covid-19 di Play Store Menggunakan Algoritma Naive Bayes Classifier. Seminar Nasional Sistem Informasi dan Manajemen Informatika Universitas Nusa Putra. 1(1), 189–196.
Buntoro, G. A. (2017). Analisis Sentimen Calon Gubernur DKI Jakarta 2017 Di Twitter. Integer Journal, 2(1), 32–41. https://doi.org/10.22487/j26204118.2018.v1.i2.11219
Cahyani, I. P. (2020). Membangun Engagement Melalui Platform Digital (Studi Kasus Flip sebagai Start-Up Fintech). Ekspresi dan Persepsi : Jurnal Ilmu Komunikasi, 3(2), 76. https://doi.org/10.33822/jep.v3i2.1668
Erfina, A., Basryah, E. S., Saepulrohman, A., & Lestari, D. (2020). Analisis Sentimen Aplikasi Pembelajaran Online di Play Store pada Masa Pandemi Covid-19 Menggunakan Algoritma Support Vector Machine. Seminar Nasional Informatika (SEMNASIF), 1(1), 145-152.
Ernawati, S., & Wati, R. (2018). Penerapan Algoritma K-Nearest Neighbors Pada Analisis Sentimen Review Agen Travel. Jurnal Khatulistiwa Informatika, 6(1), 64–69.
Giovani, A. P., Ardiansyah, A., Haryanti, T., Kurniawati, L., & Gata, W. (2020). Analisis Sentimen Aplikasi Ruang Guru di Twitter Menggunakan Algoritma Klasifikasi. Jurnal Teknoinfo, 14(2), 115. https://doi.org/10.33365/jti.v14i2.679
Krotov, V., Johnson, L., & Silva, L. (2020). Legality and Ethics of Web Scraping. Communications of the Association for Information Systems, 47, 539–563. https://doi.org/10.17705/1CAIS.04724
Marisa, F., Maukar, A. L., Farhan, A., Widodo, E. A., Sa’adah, I., & Dasilva, R. T. L. (2021). Pengukuran Tingkat Kematangan Kopi Arabika Menggunakan Algoritma K-Nearest Neighbour. JIMP : Jurnal Informatika Merdeka Pasuruan, 6(3), 1-5. http://dx.doi.org/10.37438/jimp.v6i3.346
Prawirasasra, K. P. (2018). Financial technology in Indonesia: Disruptive or collaborative? Reports on Economics and Finance, 4(2), 83–90. https://doi.org/10.12988/ref.2018.818
Pertiwi, F. L. I. (2022). Mau transfer antar bank gratis? Pakai Flip! https://flip.id/landing
Qaiser, S., & Ali, R. (2018). Text Mining: Use of TF-IDF to Examine the Relevance of Words to Documents. International Journal of Computer Applications, 181(1), 25–29. https://doi.org/10.5120/ijca2018917395
Que, V. K. S., Iriani, A., & Purnomo, H. D. (2020). Analisis Sentimen Transportasi Online Menggunakan Support Vector Machine Berbasis Particle Swarm Optimization. Jurnal Nasional Teknik Elektro dan Teknologi Informasi, 9(2), 162–170. https://doi.org/10.22146/jnteti.v9i2.102
Rozi, F., Sukmana, F., & Adani, M. N. (2021). Pengelompokkan Judul Buku dengan Menggunakan Algoritma K-Nearest Neighbor (K-NN) dan Term Frequency – Inverse Document Frequency (TF-IDF). JIMP : Jurnal Informatika Merdeka Pasuruan, 6(3), 1–5. http://dx.doi.org/10.37438/jimp.v6i3.346
Saputra, S. A., & Rosiyadi, D. (2019). Analisis Sentimen E-Wallet Pada Google Play Menggunakan Algoritma Naive Bayes Berbasis Particle Swarm Optimization. Jurnal Resti (Rekayasa Sistem dan Teknologi Informasi), 3(3), 377-382. https://doi.org/10.29207/resti.v3i3.1118
Sari, R. (2020). Analisis Sentimen pada Review Objek Wisata Dunia Fantasi Menggunakan Algoritma K-Nearest Neighbor (K-NN). EVOLUSI: Jurnal Sains dan Manajemen, 8(1). https://doi.org/10.31294/evolusi.v8i1.7371
Senthikumar, Maheswari. (2019). Rule Based Morphological Variation Removable Stemming Algorithm. International Journal of Recent Technology and Engineering, 8(4), 1809– 1814. https://doi.org/10.35940/ijrte.C6200.118419
Sepri, D. (2020). Penerapan Algoritma Naïve Bayes Untuk Analisis Kepuasan Penggunaan Aplikasi Bank. Journal of Computer System and Informatics (JoSYC), 2(1), 135-139.
Sihombing, L. O., Hannie, H., & Dermawan, B. A. (2021). Sentimen Analisis Customer Review Produk Shopee Indonesia Menggunakan Algortima Naïve Bayes Classifier. Edumatic: Jurnal Pendidikan Informatika, 5(2), 233-242. https://doi.org/10.29408/edumatic.v5i2.4089
Šimundić, A.-M. (2009). Measures of Diagnostic Accuracy: Basic Definitions. EJIFCC, 19(4), 203–211. PubMed.
Sugianto, C. A., & Apandi, T. H. (2018). Pengaruh Tokenisasi Kata N-Grams Spam SMS Menggunakan Support Vector Machine [Preprint]. INA-Rxiv. https://doi.org/10.31227/osf.io/vjc7k
Takdirillah, R. (2020). Penerapan Data Mining Menggunakan Algoritma Apriori Terhadap Data Transaksi Sebagai Pendukung Informasi Strategi Penjualan. Edumatic : Jurnal Pendidikan Informatika, 4(1), 37–46. https://doi.org/10.29408/edumatic.v4i1.2081
Downloads
Published
Issue
Section
License
Semua tulisan pada jurnal ini adalah tanggung jawab penuh penulis. Edumatic: Jurnal Pendidikan Informatika bisa diakses secara free (gratis) tanpa ada pungutan biaya, sesuai dengan lisensi creative commons yang digunakan.
This work is licensed under a Lisensi a Creative Commons Attribution-ShareAlike 4.0 International License.