Implementasi Algoritma Apriori dan FP-Growth pada Penjualan Spareparts

Aditya Wadanur, Aprilisa Arum Sari

Abstract


Data Mining can be applied in various areas, for example in PT. Agung Toyota Denpasar in order to increase sales and determine the sale of replacement parts. The current problem is to determine the replacement parts sale in PT. Agung Toyota Denpasar cannot know the purchasing habits of customers or customers in purchasing replacement parts purchased simultaneously. This research aims to implement apriori algorithms and fp-growth algorithms to form a model or a combination of rules so that businesses can increase their sales. Using the Knowledge Discovery Database (KDD) method should provide significant information on transaction patterns purchased simultaneously using the apriori and fp-growth algorithms. The dataset used to support this research is the sales transactional dataset for the period of January 2022. The results showed that the 10 best association rules of apriori algorithms and fp-growth algorithms were ready to be used to increase sales with a minimum support value of 85%, confidence value of 100%, and the highest lift ratio of 2.03.


Keywords


apriori algorithm; fp-growth algorithm; association rule; data mining

Full Text:

PDF

References


Abdullah, A. (2018). Rekomendasi Paket Produk Guna Meningkatkan Penjualan Dengan Metode FP-Growth. Khazanah Informatika: Jurnal Ilmu Komputer Dan Informatika, 4(1), 21–26. https://doi.org/10.23917/khif.v4i1.5794

Anas, A. (2021). Implementasi Algoritma Apriori untuk Mendapatkan Pola Dosen Pembimbing Skripsi STIE-GK Muara Bulian. Jurnal Ilmiah Media Sisfo, 15(1), 19-27. https://doi.org/10.33998/mediasisfo.2021.15.1.972

Anggraeni, S., Iha, M. A., Erawati, W., & Khairunnas, S. (2019). The Analysis of Sales by Using Apriori and FP-Growth at PT. Panca Putra Solusindo. REMIK: Riset dan E-Jurnal Manajemen Informatika Komputer, 3(2), 41-46.

Deolika, A., Kusrini, K., & Luthfi, E. T. (2019). Analisis Pembobotan Kata Pada Klasifikasi Text Mining. JurTI (Jurnal Teknologi Informasi), 3(2), 179-184. https://doi.org/10.36294/jurti.v3i2.1077

Erdem Günay, M., & Yıldırım, R. (2021). Recent advances in knowledge discovery for heterogeneous catalysis using machine learning. Catalysis Reviews, 63(1), 120–164. https://doi.org/10.1080/01614940.2020.1770402

Firman, C. E. (2019). Penentuan Pola yang Sering Muncul untuk Penjualan Pupuk Menggunakan Algoritma Fp-growth. Informatika, 9(2), 1-8. https://doi.org/10.36723/juri.v9i2.97

Fitriati, D., & Hardiyanto, M. (2018). Perbandingan Algoritma Apriori Dan Algoritma Fp-Growth Untuk Mengetahui Pola Penggunaan Transportasi Online. SNATIF, 5(1), 549-556.

Gunadi, G., & Sensuse, D. I. (2016). Penerapan metode data mining market basket analysis terhadap data penjualan produk buku dengan menggunakan algoritma apriori dan frequent pattern growth (fp-growth): studi kasus percetakan PT. Gramedia. Telematika MKOM, 4(1), 118-132.

Hasugian, P. M. (2017). Pengujian Algoritma Apriori Dengan Aplikasi Weka Dalam Pembentukan Asosiation Rule. Jurnal Mantik Penusa, 1(2), 98-103.

Hidayat, W., Utami, E., Iskandar, A. F., Hartanto, A. D., & Prasetio, A. B. (2021). Perbandingan Performansi Model pada Algoritma K-NN terhadap Klasifikasi Berita Fakta Hoaks Tentang Covid-19. Edumatic: Jurnal Pendidikan Informatika, 5(2), 167–176. https://doi.org/10.29408/edumatic.v5i2.3664

Prahartiwi, L. I. (2017). Pencarian Frequent Itemset pada Analisis Keranjang Belanja Menggunakan Algoritma FP-Growth. Information System For Educators And Professionals: Journal Of Information System, 2(1), 1-10.

Iriondo Pascual, A., Smedberg, H., Högberg, D., Syberfeldt, A., & Lämkull, D. (2022). Enabling Knowledge Discovery in Multi-Objective Optimizations of Worker Well-Being and Productivity. Sustainability, 14(9), 1-14. https://doi.org/10.3390/su14094894

Liu, Z., Lu, Y., Shen, M., & Peh, L. C. (2021). Transition from building information modeling (BIM) to integrated digital delivery (IDD) in sustainable building management: A knowledge discovery approach based review. Journal of Cleaner Production, 291, 125223. https://doi.org/10.1016/j.jclepro.2020.125223

Qomariah, S., Basrie, B., & Pa’a, S. F. (2020). Implementasi Algoritma Apriori Pada Data Penjuanlan Produk Asesoris CV Princes Diary SAMARINDA. Just TI (Jurnal Sains Terapan Teknologi Informasi), 12(2), 31-37. https://doi.org/10.46964/justti.v12i2.321

Rerung, R. R. (2018). Penerapan Data Mining dengan Memanfaatkan Metode Association Rule untuk Promosi Produk. Jurnal Teknologi Rekayasa, 3(1), 89-98. https://doi.org/10.31544/jtera.v3.i1.2018.89-98

Riszky, A. R., & Sadikin, M. (2019). Data Mining Menggunakan Algoritma Apriori untuk Rekomendasi Produk bagi Pelanggan. Jurnal Teknologi dan Sistem Komputer, 7(3), 103-108. https://doi.org/10.14710/jtsiskom.7.3.2019.103-108

Rizky, M., Ridha, A. A., & Prihandani, K. (2021). Penentuan Paket Promosi Pakaian PT. D&C Production dengan Menggunakan Algoritma FP-Growth. Edumatic: Jurnal Pendidikan Informatika, 5(2), 177–186. https://doi.org/10.29408/edumatic.v5i2.3714

Rusnandi, R., Suparni, S., & Pohan, A. B. (2020). Penerapan Data Mining Untuk Analisis Market Basket Dengan Algoritma Fp-Growth Pada Pd Pasar Tohaga. Jurnal Nasional Pendidikan Teknik Informatika: JANAPATI, 9(1), 119-133. https://doi.org/10.23887/janapati.v9i1.19349

Santoso, H., Hariyadi, I. P., & Prayitno, P. (2016). Data Mining Analisa Pola Pembelian Produk Dengan Menggunakan Metode Algoritma Apriori. Semnasteknomedia Online, 4(1), 3-7.

Sihombing, L. O., Hannie, H., & Dermawan, B. A. (2021). Sentimen Analisis Customer Review Produk Shopee Indonesia Menggunakan Algortima Naïve Bayes Classifier. Edumatic: Jurnal Pendidikan Informatika, 5(2), 233–242. https://doi.org/10.29408/edumatic.v5i2.4089

Sikumbang, E. D. (2018). Penerapan data mining penjualan sepatu menggunakan metode algoritma apriori. Jurnal Teknik Komputer AMIK BSI, 4(1), 156-161. https://doi.org/10.31294/jtk.v4i1.2560

Takdirillah, R. (2020). Penerapan Data Mining Menggunakan Algoritma Apriori Terhadap Data Transaksi Penjualan Bisnis Ritel. Edumatic: Jurnal Pendidikan Informatika, 4(1), 37–46. https://doi.org/10.29408/edumatic.v4i1.2081

Tanna, P., & Ghodasara, Y. (2014). Using Apriori with WEKA for Frequent. International Journal of Engineering Trends and Technology (IJETT), 12(3), 127-131.

Yakub, S., & Syahfitriani, S. (2020). Analisis Data Mining Untuk Strategi Promosi Produk Kosmetik Di Wardah Kosmetik Menggunakan Metode Apriori. Jurnal Teknologi Sistem Informasi dan Sistem Komputer TGD, 3(1), 163-181. https://doi.org/10.53513/jsk.v3i1.207




DOI: https://doi.org/10.29408/edumatic.v6i1.5470

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Aditya Wadanur, Aprilisa Arum Sari

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

Statistik Pengunjung

Creative Commons License

Edumatic: Jurnal Pendidikan Informatika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.