Web-Based Face Recognition using Line Edge Detection and Euclidean Distance Method
DOI:
https://doi.org/10.29408/edumatic.v6i1.5525Keywords:
euclidean distance, face recognition, line edge detection, search systemAbstract
A face recognition system is to perform a match face image using the face extraction method. There are many applications used in various algorithms and implemented in many programming languages, but still difficult to implement on web-based applications using the PHP programming language. The purpose of this research is to produce a website-based application focused on the face recognition section. The author will limit the system only to detect the front view of the face, the main goal is to get a fairly high level of accuracy. There will be a feature to find where the face is located. The research method used is a laboratory experiment where the search system scheme based on face recognition will produce the appearance of several faces that have the closest Euclidean distance values from grades 1st to 5th. The results from the comparison of the test image with the training image based on Line Edge Detection and Euclidean Distance calculation concluded that the system can be implemented in searching of similarity and recognizing the face.
References
Abidin, S. (2018). Deteksi Wajah Menggunakan Metode Haar Cascade Classifier Berbasis Webcam Pada Matlab. Jurnal Teknologi Elekterika, 15(1), 21–27. https://doi.org/10.31963/elekterika.v15i1.2102
Alam, M. J., & ShahzahanAli, T. C. M. (2020). A smart login system using face detection and recognition by ORB algorithm. Indonesian Journal of Electrical Engineering and Computer Science, 20(2), 1078-1087. https://doi.org/10.11591/ijeecs.v20.i2.pp1078-1087
Archilles, A., & Wicaksana, A. (2020). Vision: a web service for face recognition using convolutional network. TELKOMNIKA (Telecommunication Computing Electronics and Control), 18(3), 1389-1396. https://doi.org/10.12928/TELKOMNIKA.v18i3.14790
Gao, Y., & Leung, M. K. H. (2002). Face recognition using line edge map. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(6), 764–779. https://doi.org/10.1109/TPAMI.2002.1008383
Hidayat, W., Utami, E., Iskandar, A. F., Hartanto, A. D., & Prasetio, A. B. (2021). Perbandingan Performansi Model pada Algoritma K-NN terhadap Klasifikasi Berita Fakta Hoaks Tentang Covid-19. Edumatic: Jurnal Pendidikan Informatika, 5(2), 167–176. https://doi.org/10.29408/edumatic.v5i2.3664
Kagawade, V. C., & Angadi, S. A. (2019). Multi-directional local gradient descriptor: A new feature descriptor for face recognition. Image and Vision Computing, 83–84(C), 39–50. https://doi.org/10.1016/j.imavis.2019.02.001
Khan, M. J., Khurshid, K., & Shafait, F. (2019). A spatio-spectral hybrid convolutional architecture for hyperspectral document authentication. Proceedings of the International Conference on Document Analysis and Recognition, ICDAR, 1097–1102. https://doi.org/10.1109/ICDAR.2019.00178
Kusrini, W., Fathurrahmani, F., & Sayyidati, R. (2020). Sistem Pakar untuk Diagnosa Penyakit Ayam Pedaging. Edumatic: Jurnal Pendidikan Informatika, 4(2), 75–84. https://doi.org/10.29408/edumatic.v4i2.2616
Li, C., & Li, C. (2019). Web Front-End Realtime Face Recognition Based on TFJS. Proceedings 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics, CISP-BMEI, 1–5. https://doi.org/10.1109/CISP-BMEI48845.2019.8965963
Lyanpen, W., Petrosyan, O. G., & Jianming, D. (2019). Face Recognition Based on the Coefficient Tree for Three Scale Wavelet Transformation. Automatic Control and Computer Sciences, 53(8), 995–1005. https://doi.org/10.3103/S0146411619080315
Mekala, V., Vinod, V. M., Manimegalai, M., & Nandhini, K. (2019). Face recognition based attendance system. International Journal of Innovative Technology and Exploring Engineering, 8(12), 520–525. https://doi.org/10.35940/ijitee.L3406.1081219
Nikhilesh, S. (2018). Face Recognition In Java Environment. International Journal of Advanced Multidisciplinary Scientific Research, 1(5), 46–49. https://doi.org/10.31426/ijamsr.2018.1.5.519
Nordin, N., & Fauzi, N. H. M. (2020). A web-based mobile attendance system with facial recognition feature. International Journal of Interactive Mobile Technologies, 14(5), 193–202. https://doi.org/10.3991/IJIM.V14I05.13311
Pang, J. Y., Low, K. Y., & Wong, H. L. (2019). Development of a multi-client student attendance monitoring system. International Journal of Recent Technology and Engineering, 8(3 Special Issue), 6–11. https://doi.org/10.35940/ijrte.C1002.1083S19
Pereira, P., & Kuhn, T. (2020). An Experimental Study of Face Recognition Method. Computer Science & IT Research Journal, 1(2), 52–58. https://doi.org/10.51594/csitrj.v1i2.135
Rahmadi, T., Ginting, G., & Fadlina. (2018). Identifikasi wajah manusia berdasarkan warna kulit dengan menggunakan transformasi wavelet. Pelita Informatika Budi Darma, 6(4), 394-397.
Rai, L., Wang, Z., Rodrigo, A., Deng, Z., & Liu, H. (2020). Software development framework for real-time face detection and recognition in mobile devices. International Journal of Interactive Mobile Technologies, 14(4), 103–120. https://doi.org/10.3991/IJIM.V14I04.12077
Saad, S. L., Kamal, M. M., & Zamri, N. A. (2019). Monitoring and complaining web-based face recognition using Haar-MATLAB. 8thIEEE International Conference on Control System, Computing and Engineering, ICCSCE, 206–211. https://doi.org/10.1109/ICCSCE.2018.8685017
Sutabri, T., Pamungkur, Kurniawan, A., & Saragih, R. E. (2019). Automatic attendance system for university student using face recognition based on deep learning. International Journal of Machine Learning and Computing, 9(5), 668–674. https://doi.org/10.18178/ijmlc.2019.9.5.856
Tabassum, F., Imdadul Islam, M., Tasin Khan, R., & Amin, M. R. (2022). Human face recognition with combination of DWT and machine learning. Journal of King Saud University - Computer and Information Sciences, 34(3), 546–556. https://doi.org/10.1016/j.jksuci.2020.02.002
Tuncer, T., Dogan, S., Abdar, M., Basiri, M. E., & Pławiak, P. (2019). Face recognition with triangular fuzzy set-based local cross patterns inwavelet domain. Symmetry, 11(6), 1–18. https://doi.org/10.3390/sym11060787
Wu, H., Cao, Y., Wei, H., & Tian, Z. (2021). Face Recognition Based on Haar like and Euclidean Distance. Journal of Physics: Conference Series, 1813(1), 1–7. https://doi.org/10.1088/1742-6596/1813/1/012036
Downloads
Published
Issue
Section
License
Semua tulisan pada jurnal ini adalah tanggung jawab penuh penulis. Edumatic: Jurnal Pendidikan Informatika bisa diakses secara free (gratis) tanpa ada pungutan biaya, sesuai dengan lisensi creative commons yang digunakan.
This work is licensed under a Lisensi a Creative Commons Attribution-ShareAlike 4.0 International License.