Prediksi Tren Pergerakan Harga Saham PT Bank Central Asia Tbk, Dengan Menggunakan Algoritma Long Shot Term Memory (LSTM)

Authors

  • M. Nurul Wathani Teknik Informatika Fakultas Teknik Universitas Hamzanwadi
  • Kusrini Kusrini Universitas Amikom Yogyakarta
  • Kusnawi Kusnawi Universitas Amikom Yogyakarta

DOI:

https://doi.org/10.29408/jit.v6i2.19824

Keywords:

Long Short Term Memory, Predictions, Stocks, Banking

Abstract

Shares are valuable documents that prove ownership of a company. Stock investment is one of the right choices to get more profit. There are various stocks in Indonesia, one of which is the shares of PT Bank Central Asia Tbk (BBCA). However, in making stock investments, it is necessary to analyze the data of a company that can determine the increase or decrease in a stock price. Very dynamic movements require data modeling to predict stock prices in order to get a high level of accuracy. In this study, modeling using the Long-Short Term Memory (LSTM) algorithm to predict BBCA stock prices. The data used is secondary daily data obtained from securities with a date range of January 3, 2011 to December 30, 2022. The main objective of this research is to analyze the accuracy of the LSTM algorithm in forecasting stock prices and to analyze the number of epochs in the formation of the optimal model. The optimal epoch variation is obtained with the number of epochs of 5 and batch size 1. The resulting values include Mean Absolute Error (MAE) of 96.92, Mean Squared Error (MSE) of 16185.22 and Root Mean Squared Error (RMSE) of 127.22. The results of this study provide further insight into the performance of the LSTM algorithm in stock price prediction and show that with the right parameter settings, it can be a useful tool for investors in making better investment decisions

References

R. Vanaga and B. Sloka, “Financial and capital market commission financing: Aspects and challenges,” Journal of Logistics, Informatics and Service Science, vol. 7, no. 1, pp. 17–30, 2020, doi: 10.33168/LISS.2020.0102.

L. L. Zhang and H. K. Kim, “The influence of financial service characteristics on use intention through customer satisfaction with mobile fintech,” Journal of System and Management Sciences, vol. 10, no. 2, pp. 82–94, 2020, doi: 10.33168/jsms.2020.0206.

M. Kafil, “Penerapan Metode K-Nearest Neighbors Untuk Prediksi Penjualan Berbasis Web Pada Boutiq Dealove Bondowoso,” 2019.

M. A. Hasanah, S. Soim, and A. S. Handayani, “Implementasi CRISP-DM Model Menggunakan Metode Decision Tree dengan Algoritma CART untuk Prediksi Curah Hujan Berpotensi Banjir,” 2021.

Y. Yuliani, “Algoritma Random Forest Untuk Prediksi Kelangsungan Hidup Pasien Gagal Jantung Menggunakan Seleksi Fitur Bestfirst,” Infotek : Jurnal Informatika dan Teknologi, vol. 5, no. 2, pp. 298–306, Jul. 2022, doi: 10.29408/jit.v5i2.5896.

Mardi Y, “Jurnal Edik Informatika Data Mining : Klasifikasi Menggunakan Algoritma C4.5,” Jurnal Edik Informatika, vol. 2, pp. 213–219, 2019.

P. Aji Riyantoko, T. Maulana Fahruddin, K. Maulida Hindrayani, and E. Maya Safitri, “Analisis Prediksi Harga Saham Sektor Perbankan Menggunakan Algoritma Long-Short Terms Memory (LSTM),” Seminar Nasional Informatika, pp. 427–435, 2020.

R. Julian and M. R. Pribadi, “Peramalan Harga Saham Pertambangan Pada Bursa Efek Indonesia (BEI) Menggunakan Long Short Term Memory (LSTM),” Jurnal Teknik Informatika dan Sistem Informasi, vol. 8, no. 3, 2021.

A. Arfan and L. ETP, “Perbandingan Algoritma Long Short-Term Memory dengan SVR Pada Prediksi Harga Saham di Indonesia,” PETIR, vol. 13, no. 1, pp. 33–43, Mar. 2020, doi: 10.33322/petir.v13i1.858.

W. Hastomo, A. Satyo, B. Karno, N. Kalbuana, E. Nisfiani -4, and L. Etp -, “JEPIN (Jurnal Edukasi dan Penelitian Informatika) Optimasi Deep Learning untuk Prediksi Saham di Masa Pandemi Covid-19,” Jepin, vol. 7, pp. 133–140, 2021.

A. Agusta, I. Ernawati, and A. Muliawati, “Prediksi Pergerakan Harga Saham Pada Sektor Farmasi Menggunakan Algoritma Long Short-Term Memory,” Jurnal Informatika, vol. 17, 2021.

IDXChannel, “Sejarah Saham BBCA Emiten Perbankan Incaran - Investor RI,” Aug. 26, 2022..

A. Karpathy, J. Johnson, and L. Fei-Fei, “Visualizing and Understanding Recurrent Networks,” ICLR, Jun. 2015,

Noviyanto, “Penerapan Data Mining dalam Mengelompokkan Jumlah Kematian Penderita COVID-19 Berdasarkan Negara di Benua Asia,” Paradigma – Jurnal Informatika dan Komputer, vol. 22, pp. 183–188, 2020, doi: 10.31294/p.v21i2.

R. Kurniah, D. Y. Surya Putra, and E. Diana, “Penerapan Data Mining Decission Tree Algoritma C4.5 Untuk Mengetahui Tingkat Kepuasan Mahasiswa Terhadap Layanan Akademik Dan Kemahasiswaan (Studi Kasus Universitas.Prof.Dr. Hazairin,SH),” Infotek : Jurnal Informatika dan Teknologi, vol. 5, no. 2, pp. 316–326, Jul. 2022, doi: 10.29408/jit.v5i2.5910

Downloads

Published

20-07-2023

How to Cite

Wathani, M. N., Kusrini, K., & Kusnawi, K. (2023). Prediksi Tren Pergerakan Harga Saham PT Bank Central Asia Tbk, Dengan Menggunakan Algoritma Long Shot Term Memory (LSTM). Infotek: Jurnal Informatika Dan Teknologi, 6(2), 502–512. https://doi.org/10.29408/jit.v6i2.19824

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.