Komparasi Algoritma Naïve Bayes Dan Support Vector Machine (SVM) Untuk Klasifikasi Kelayakan Pemberian Pinjaman
DOI:
https://doi.org/10.29408/jit.v6i2.20059Keywords:
Comparison, Loan, Naïve Bayes, SVMAbstract
Cooperatives are social organizations or economic bodies that have a very important role in the growth, development of economic potential and community success. One of the cooperative activities is the provision of credit or loans to community members. Cooperative credit is one of the most important banking activities and serves to provide credit to the community. In practice, errors often arise due to inaccurate credit analysis, or the behavior of the customers themselves. The purpose of this research is to compare the accuracy results between the Naive Bayes algorithm and Support Vector Machine (SVM), where the best accuracy results can later be used as a reference to determine the profitability of lending. The attributes used in this study consist of 11 attributes, namely: Gender, marital status, occupation, relatives, nominal income, income criteria, loan amount, loan term, interest rate, installments and class as income characteristics. The dataset used in this study includes 166 members of the Daru Nahdla Capita Shari'ah cooperative. The results of testing the naive bayes algorithm after dividing the data five times, dividing the data set 70% as test data and 30% as training data, obtained a precision value of 97.00%, recall 100.00%, F1 score 99.00%. and accuracy 98.00%. Thus, the Naive Bayesian algorithm is an algorithm that shows accurate classification and prediction
References
Putra, W. T., Sodikin, L. S. E., Ruhiyat, D. M., & Yulianto, A, 2021, Klasifikasi Data Pinjaman Koperasi Menggunakan Algoritma Naïve Bayes, Jurnal Paradigma, Vol. 23 (2).
Raihan, R. M., Chrisnanto, H. Y., & Ningsih, K. A., 2022, Klasifikasi Penentuan Kelayakan Pinjaman Koperasi Dengan Algoritma CART Mengguanakan Algortima AdaBoost, Jurnal Infotech, Vol. 8 (2).
Hanun, L. N., & Zailani, U. A, 2020, Penerapan Algoritma Klasifikasi Random Forest Untuk Penentuan Kelayakan Pemberian Kredit di Koperasi Mitra Sejahtera, Jurnal of Technology Information, Vol. 6 (1).
Alita, D., Sari, I., Isnaini, R. A., & Styawati, 2021, Penerapan Naïve Bayes Classifier Untuk Pendukung Keputusan Peneriama Beasiswa, JDMSI, Vol. 2 (1), Hal. 17-23.
Kusuma, J., Hayadi, H. B., Wanayumini., & Rosnelly, 2022, Komparasi Metode Multi Layer Perception (MLP) dan Support Vector Machine (SVM) untuk Klasifikasi Kanker Payudara, Jurnal MIND, Vol. 7 (1), Hal. 51-60.
Mulyani, S. D. E., Rihadisha, A., Gine, G. D., Saputri, N., & Wulansari, 2020, Klasifikasi Penentuan Kelayakan Pemberian Kredit Menggunakan Metode Navie Bayes Classifier, Jurnal VOI, Vol. 9 (2).
Madia, N., Septiarini, A., Hatta, R. H., Hamdani., & Wati, M., 2023, Penentuan Kelayakan Masyarakat Miskin Penerima Bantuan Menggunakan Metode Naïve Bayes, Jurnal JISKA, Vol. 8 (1), Hal. 36-49.
Komang, A. S., Utami, W. N., Estiyanti., M., 2022, Perbandingan Algoritma Svm, Random Forest Dan XGBoost Untuk Penentuan Penentuan Persetujuan Pengajuan Kredit, J- SAKTI, Vol. 6 (1), Hal. 391-404.
Jasmir., Sika.X., Mulyadi., Amelia, R., 2022, Klasifikasi Kelayakan Pemberian Kredit Pada Calon Debitur Menggunakan Naïve Bayes, JURIKOM, Vol. 9 (1), Hal. 1833-1839.
Yahya., & Nasution, H. M., 2020, Penggunaan Algoritma Support Vector Machine (SVM) Untuk Penentuan Kelayakan Pemberian Kredit Koperasi Serba Usaha “Daruzzakah Zakah” Desa Rensing Kecamatan Sakra Lombok Timur Nusa Tenggara Barat, Jurnal Infotek, Vol. 3 (1), Hal. 32-41.
Winjani, W., & Fatchan, M., 2022, Pendekatan Algoritma Support Vector Machine Untuk Menentukan Kenaikan Gaji, JINTEKS, Vol. 4 (2), Hal. 114-117.
Moertini, S. V., 2002, Data Mining Sebagai Solusi Bisnis, Jurnal INTEGRAL, Vol. 7 (1).
Putri, B. N., & Wijayanto, W. A., 2022, Analisis Komparasi Algoritma Klasifikasi Data MiningDalam Klasifikasi Website Phishing, Jurnal Komputika, Vol. 11 (1), Hal. 59-66.
Khikmanto. S., Nurul, K., Taufik. H.P., 2014, Analisis Metode Support Vector Machine (SVM) Untuk Klasifikasi Penggunaan Lahan Berbasis Penutup Lahan Pada Citra Alos Avnir-2, Jurnal MGI Vol. 28 (1), Hal. 71-80.
]15] M. Julkarnain and K. R. Ananda., 2020, Sistem Informasi Pengolahan Data Ternak Unit Pelaksana, Jinteks, Vol. 2 (1), Hal. 32–39.
Meilani.T.H.B., Bertha S.D., Yelly. Y.N., 2018, Multinomial Naive Bayes Untuk Klasifikasi Status Kredit Mitra Binaan Di PT. Angkasa Pura 1 Program Kemitraan
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Semua tulisan pada jurnal ini menjadi tanggung jawab penuh penulis. Jurnal Infotek memberikan akses terbuka terhadap siapapun agar informasi dan temuan pada artikel tersebut bermanfaat bagi semua orang. Jurnal Infotek ini dapat diakses dan diunduh secara gratis, tanpa dipungut biaya sesuai dengan lisense creative commons yang digunakan.Jurnal Infotek is licensed under a Creative Commons Attribution 4.0 International License.
Statistik Pengunjung