Analisis Perbandingan Pengaruh Pertumbuhan Ekonomi Terhadap Tingkat Kesejahteraan Masyarakat Pada Desa Suralaga Dengan Menggunakan Algoritma Naive Bayes Dan Support Vector Machine (Svm)

Fathurrahman Fathurrahman, Yupi Kuspandi Putra

Abstract


Data is an inanimate object that is meaningless and useless for anything. This statement is a statement that is not based on existing facts and realities. In principle, data is an inanimate object whose collection can be very influential in all aspects of human life. Data can shock the world if processed and published. Because data is so influential, humans can speak freely which is unlikely to be debated. Data is able to influence the development and progress of a nation in all respects such as: economy, health, policy, security and so on. Therefore, data obtained by means of surveys and so on, must be treated carefully in order to be able to provide maximum contribution in decision making. The search for stable economic growth and environmentally sustainable quality is fast becoming a topical issue among governments, international agencies and other stakeholders interested in sustainable development. The highest accuracy value is shown by experiments using K-Vold Validation 8 and K-Vold Validation 10. While the tolerance given to K-Vold Validation 8 (0.49%) is smaller than K = Vold Validation 10 of (0.58%). This means that K-Vold Validation 8 is tighter than K-Vold Validation 10. So that the best used in decision making is K-Vold Validation 8 at 99.62% with a tolerance of 0.49%. The results of data processing using the Naive Bayes algorithm and the Support Vector Machine both illustrate that the economic influence on the level of welfare of the Suralaga Village community is very large and it can be concluded that the average Suralaga Village community is included in the category of not prosperous. This is indicated by the fact that there are still many people who depend on their livelihoods from working as laborers and foreign workers


Keywords


SDGs, Naive Bayes,SVM, Economic

Full Text:

PDF

References


K. A. K. Niazi, W. Akhtar, H. A. Khan, Y. Yang, and S. Athar, “Hotspot diagnosis for solar photovoltaic modules using a Naive Bayes classifier,” Sol. Energy, vol. 190, no. August, pp. 34–43, 2019, doi: 10.1016/j.solener.2019.07.063.

S. Niell et al., “Beehives biomonitor pesticides in agroecosystems: Simple chemical and biological indicators evaluation using Support Vector Machines (SVM),” Ecol. Indic., vol. 91, no. January, pp. 149–154, 2018, doi: 10.1016/j.ecolind.2018.03.028.

K. Mahmodi, M. Mostafaei, and E. Mirzaee-Ghaleh, “Detection and classification of diesel-biodiesel blends by LDA, QDA and SVM approaches using an electronic nose,” Fuel, vol. 258, no. May, p. 116114, 2019, doi: 10.1016/j.fuel.2019.116114.

andi nurul Hidayat, “Analisis Sentimen Terhadap Wacana Politik Pada Media Masa Online Menggunakan Algoritma Support Vector Machine Dan Naive Bayes,” J. Elektron. Sistim Inf. Dan Komput., vol. 1, no. 1, pp. 1–7, 2015.

N. Saputra, T. B. Adji, and A. E. Permanasari, “Analisis Sentimen Data Presiden Jokowi dengan Preprocessing Normalisasi dan Stemming Menggunakan Metode Naive Bayes dan SVM,” J. Din. Inform., vol. 5, no. November, p. 12, 2015, [Online]. Available: http://ojs.upy.ac.id/ojs/index.php/dinf/article/view/113.

mahpuz Yahya, “Penggunaan Algoritma K-Means Untuk Menganalisis Pelanggan Potensial Pada Dealer SPS Motor Honda Lombok Timur Nusa Tenggara Barat,” Infotek, vol. 2, no. 2, p. 373426, 2019.

reni zuliana Yahya, “Prediksi Jumlah Penggunaan BBM Perbulan Menggunakan Algoritma Decition Tree (C4.5) Pada Kantor Dinas Lingkungan Hidup dan Kebersihan Kecamatan Selong Kabupaten Lombok Timur,” vol. 1, no. 1, pp. 430–439, 2018.

Y. H. Hui et al., “PENERAPAN ALGORITMA NAIVE BAYES UNTUK MEMPREDIKSI JUMLAH PRODUKSI BARANG BERDASARKAN DATA PERSEDIAAN DAN JUMLAH PEMESANAN PADA CV. PAPADAN MAMA PASTRIES. Volume 1.,” J. Mantik Penusa, vol. 1, no. 2, pp. 16–21, 2017, [Online]. Available: https://ezp.lib.unimelb.edu.au/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=ffh&AN=2008-10-Aa4022&site=eds-live&scope=site.

muhammad wasil mahpuz, yahya, “Implementasi Algoritma Decision Tree Untuk Mengetahui Faktor Kredit Macet Dan Lancar di Koperasi Serba Usaha Daruzzakah Rensing Lombok Timur,” Infotek, vol. 3, no. 2, pp. 9–20, 2020.

W. P. H. Yahya, “Penerapan Algoritma K-Nearest Neighbor Untuk Klasifikasi Efektivitas Penjualan Vape ( Rokok Elektrik ) pada ‘ Lombok Vape On ’ Pendahuluan dihasilkan tidak stabil dan tidak mampu diprediksi Dari penelitian yang dilakukan , berusaha untuk mengklasifikasika,” Infotek, vol. 3, no. 2, pp. 21–31, 2020.

Y. A. Setianto, K. Kusrini, and H. Henderi, “Penerapan Algoritma K-Nearest Neighbour Dalam Menentukan Pembinaan Koperasi Kabupaten Kotawaringin Timur,” Creat. Inf. Technol. J., vol. 5, no. 3, p. 232, 2019, doi: 10.24076/citec.2018v5i3.179.


Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Infotek : Jurnal Informatika dan Teknologi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

View My Stats