Analisi Prediksi Tingkat Kesejahteraan Masyarakat Nelayan Lombok Timur Dengan Algoritma Naïve Bayes

Authors

  • arnila sandi sandi Universitas Hamzanwadi
  • Yahya Universitas Hamzanwadi
  • Muhammad Qusyairi Universitas Hamzanwadi

DOI:

https://doi.org/10.29408/jit.v7i2.26543

Keywords:

Naive Bayes, Classification, Fisherman, Pediction

Abstract

The water area in Indonesia is wider than the land area, therefore Indonesia is known as a maritime country. Indonesia also has many natural resources that come from the ocean, for example fish. Coastal communities use fish as their livelihood, where most of them become fishermen. Fishing is a daily job to meet the family's economic needs. The Fishermen's Community can be called a group of people who mostly work as fishermen. This group of people is different from people who live in lowland and highland areas, they have different characteristics, natural factors have changed their lifestyle and also their economy. It is because of the uniqueness of their lifestyle that makes the author interested in conducting research. This research uses existing data to obtain new information from that data. Researchers will predict the level of welfare of fishing communities in East Lombok using the Naive Bayes algorithm. To support the results of the decisions that will be evaluated, researchers use five variables, namely: Education, family members, wells, employment and housing. From these five variables, researchers hope to get good final results that can be used to predict the level of welfare of the fishing community in East Lombok. Evaluation is carried out using the Naive Bayes algorithm, this algorithm was chosen because it suits the characteristics of the data we have. Naive Bayes is a simple algorithm. The final results of this research were 99% for accuracy value, 81% for precision value and 100% for recall

References

S. Wiranto, “Membangun kembali budaya maritim Indonesia melalui kebijakan kelautan Indonesia dengan strategi pertahanan maritim indonesia: perspektif pertahanan maritim,” J. Marit. Indones., vol. 8, no. 2, pp. 110–126, 2020.

I. M. Ali, L. Yudo, and D. Sianturi, “Sea Defense Strategy in Facing Maritime Security Threat in Indonesia’S Sea,” J. Prodi Strateg. Pertahanan Laut, vol. 6, no. 2, pp. 169–188, 2021.

M. Ridho Matondang et al., “Analisis Data mining dengan Metode C.45 pada Klasifikasi Kenaikan Rata-Rata Volume Perikanan Tangkap,” BRAHMANA J. Penerapan Kecerdasan Buatan, vol. 2, no. 2, pp. 74–81, 2021.

O. Nurbayu and S. Rahmi, “HUBUNGAN PATRON-CLIENT DAN RITUAL PETIK LAUT-Studi Kasus Masyarakat Desa Tanjung Luar, Kabupaten Lombok Timur, Nusa Tenggara Barat.” [Online]. Available: www.google.com

S. Nam and J. Hur, “Probabilistic Forecasting Model of Solar Power Outputs Based on the Na ve Bayes Classifier and Kriging Models,” Energies, vol. 11, no. 11, 2018, doi: 10.3390/en11112982.

A. M. Nur, N. Nurhidayati, and I. Fathurrahman, “Penerapan Metode Naïve Bayes Untuk Penentuan Penerima Beasiswa Program Indonesia Pintar (PIP).,” Infotek J. Inform. dan Teknol., vol. 7, no. 1, pp. 93–102, 2024, doi: 10.29408/jit.v7i1.23995.

M. Wasil, “Infotek : Jurnal Informatika dan Teknologi Analisis Persepsi Masyarakat Terhadap Kinerja Aparatur Desa Dalam Meningkatkan Pelayanan Publik Di Desa Lenek Lauk Menggunakan Metode Naive Bayes Pelayanan publik adalah kegiatan atau rangkaian kegiatan dalam ran,” Infotek J. Inform. dan Teknol., vol. 3, no. 2, pp. 140–146, 2020.

Y. Yahya and H. Bahtiar, “Pengaruh Pertumbuhan Ekonomi Terhadap Tingkat Kesejahteraan Masyarakat Kecamatan Selong Kabupaten Lombok Timur – Nusa Tenggara Barat Menggunakan Algoritma Naive Bayes,” Infotek J. Inform. dan Teknol., vol. 4, no. 1, pp. 20–28, 2021, doi: 10.29408/jit.v4i1.2981.

M. Saiful1*, Syamsuddin2, and Moh. Farid Wajdi3, “Implementasi Algoritma Naive Bayes Untuk Memprediksi Predikat Ketuntasan Belajar Siswa Pasca Pandemi Covid 19,” Infotek J. Inform. dan Teknol., vol. 4, no. 1, pp. 96–104, 2021.

B. A. Candra Permana and I. K. Dewi Patwari, “Komparasi Metode Klasifikasi Data Mining Decision Tree dan Naïve Bayes Untuk Prediksi Penyakit Diabetes,” Infotek J. Inform. dan Teknol., vol. 4, no. 1, pp. 63–69, 2021, doi: 10.29408/jit.v4i1.2994.

H. Annur, “Klasifikasi Masyarakat Miskin Menggunakan Metode Naive Bayes,” Ilk. J. Ilm., vol. 10, no. 2, pp. 160–165, 2018, doi: 10.33096/ilkom.v10i2.303.160-165.

W. P. Nurmayanti, “Penerapan Naive Bayes dalam Mengklasifikasikan Masyarakat Miskin di Desa Lepak,” Geodika J. Kaji. Ilmu dan Pendidik. Geogr., vol. 5, no. 1, pp. 123–132, 2021, doi: 10.29408/geodika.v5i1.3430.

M. Hamzah, “Analisa dan Komparasi 5 Algoritma Klasifikasi untuk Penduduk Miskin berdasarkan Usia dan Jenis Kelamin,” J. Cakrawala Inf., vol. 1, no. 1, pp. 49–57, 2021, doi: 10.54066/jci.v1i1.212.

S. Ucha Putri, E. Irawan, F. Rizky, S. Tunas Bangsa, P. A. -Indonesia Jln Sudirman Blok No, and S. Utara, “Implementasi Data Mining Untuk Prediksi Penyakit Diabetes Dengan Algoritma C4.5,” Januari, vol. 2, no. 1, pp. 39–46, 2021.

M. Ridho Handoko, “SISTEM PAKAR DIAGNOSA PENYAKIT SELAMA KEHAMILAN MENGGUNAKAN METODE NAIVE BAYES BERBASIS WEB,” J. Teknol. dan Sist. Inf., vol. 2, no. 1, pp. 50–58, 2021, [Online]. Available: http://jim.teknokrat.ac.id/index.php/JTSI

C. I. Agustyaningrum, W. Gata, R. Nurfalah, U. Radiyah, and M. Maulidah, “KOMPARASI ALGORITMA NAIVE BAYES, RANDOM FOREST DAN SVM UNTUK MEMPREDIKSI NIAT PEMBELANJA ONLINE,” 2020.

N. B. Putri and A. W. Wijayanto, “Analisis Komparasi Algoritma Klasifikasi Data Mining Dalam Klasifikasi Website Phishing,” Komputika J. Sist. Komput., vol. 11, no. 1, pp. 59–66, 2022, doi: 10.34010/komputika.v11i1.4350.

Y. A. Wijaya, A. Bahtiar, Kaslani, and N. R, “Analisa Klasifikasi menggunakan Algoritma Decision Tree pada Data Log Firewall,” J. Sist. Inf. dan Manaj., vol. 9, no. 3, pp. 256–264, 2021, [Online]. Available: https://ejournal.stmikgici.ac.id/

M. Asrol, P. Papilo, and F. E. Gunawan, “Support Vector Machine with K-fold Validation to Improve the Industry’s Sustainability Performance Classification,” Procedia Comput. Sci., vol. 179, no. 2020, pp. 854–862, 2021, doi: 10.1016/j.procs.2021.01.074.

Karsito and S. Susanti, “Klasifikasi Kelayakan Peserta Pengajuan Kredit Rumah Dengan Algoritma Naïve Bayes Di Perumahan Azzura Residencia,” J. Teknol. Pelita Bangsa, vol. 9, pp. 43–48, 2019.

et al., “Implementasi Algoritma Naive Bayes Untuk Klasifikasi Penerima Beasiswa (Studi Kasus Universitas Hamzanwadi),” Infotek J. Inform. dan Teknol., vol. 6, no. 1, pp. 177–188, 2023, doi: 10.29408/jit.v6i1.7529.

Downloads

Published

23-07-2024

How to Cite

sandi, arnila sandi, Yahya, & Muhammad Qusyairi. (2024). Analisi Prediksi Tingkat Kesejahteraan Masyarakat Nelayan Lombok Timur Dengan Algoritma Naïve Bayes. Infotek: Jurnal Informatika Dan Teknologi, 7(2), 563–574. https://doi.org/10.29408/jit.v7i2.26543

Similar Articles

<< < 1 2 3 4 > >> 

You may also start an advanced similarity search for this article.