Analisis Pengaruh Bayesian Optimization Terhadap Kinerja SVM Dalam Prediksi Penyakit Diabetes
DOI:
https://doi.org/10.29408/jit.v8i1.28468Keywords:
Bayesian Optimization, Diabetes, Early Prediction, SVM AlgorithmAbstract
Diabetes is a prevalent and serious chronic illness that impacts millions of individuals globally. Early detection of diabetes is essential to mitigate severe health complications. This study investigates the application of Support Vector Machine (SVM) enhanced by Bayesian Optimization for the early prediction of diabetes. While SVM is a robust machine learning algorithm, its performance heavily depends on the proper selection of parameters. Bayesian Optimization is an efficient approach to fine-tune SVM parameters, such as the regularization parameter (C) and the kernel parameter (gamma). The research utilizes a Kaggle dataset that includes various diabetes risk factors. The study compares the performance of SVM optimized using Bayesian Optimization against SVM without optimization. The findings reveal that SVM with Bayesian Optimization achieves an accuracy of 95%, surpassing the 94% accuracy of the unoptimized SVM. These results highlight that Bayesian Optimization enhances SVM's effectiveness in predicting diabetes early
References
Lestari, Zulkarnain, Sijid, and S. Aisyah, “Diabetes Melitus: Review Etiologi, Patofisiologi, Gejala, Penyebab, Cara Pemeriksaan, Cara Pengobatan dan Cara Pencegahan,” UIN Alauddin Makassar, vol. 1, no. 2, pp. 237–241, 2021.
E. Muningsih, F. Rizki, and K. D. Asiffa, “Diabetes Prediction System ‘Diapres’ Berbasis Optimasi Parameter Pada Metode Decision Tree,” vol. 18, 2024.
U. Amelia, J. Indra, and A. F. N. Masruriyah, “Implementasi Algoritma Support Vector Machine (Svm) Untuk Prediksi Penyakit Stroke Dengan Atribut Berpengaruh,” Sci. Stud. J. Inf. Technol. Sci., vol. III, no. 2, pp. 254–259, 2022.
J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian Optimization of Machine Learning Algorithms,” in Advances in Neural Information Processing Systems, Weinberger, F. Pereira, C. J. Burges, and L. B. and K.Q., Eds., Lake Tahoe, 2012, pp. 1–9.
B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas, “Taking the human out of the loop: A review of Bayesian optimization,” in Proceedings of the IEEE, IEEE, 2016, pp. 148–175. doi: 10.1109/JPROC.2015.2494218.
V. N. Vapnik, The Nature of Statistical Learning Theory. New York: Springer, 1995. doi: 10.1007/978-1-4757-2440-0_6.
I. Zulfahmi, H. Syahputra, S. I. Naibaho, M. A. Maulana, and E. P. Sinaga, “Perbandingan Algoritma Support Vector Machine (SVM) dan Decision Tree Untuk Deteksi Tingkat Depresi Mahasiswa,” BINA INSANI ICT J., vol. 10, no. 1, p. 52, Jun. 2023, doi: 10.51211/biict.v10i1.2304.
E. del Castillo and M. S. Reis, “Bayesian predictive optimization of multiple and profile response systems in the process industry: A review and extensions,” Chemom. Intell. Lab. Syst., vol. 206, no. August, p. 104121, 2020, doi: 10.1016/j.chemolab.2020.104121.
A. M. Elshewey, M. Y. Shams, N. El-Rashidy, A. M. Elhady, S. M. Shohieb, and Z. Tarek, “Bayesian Optimization with Support Vector Machine Model for Parkinson Disease Classification,” Sensors, vol. 23, no. 4, p. 2085, Feb. 2023, doi: 10.3390/s23042085.
A. Bagja, K. Kusrini, and M. R. Arief, “Komparasi Algoritma Naïve Bayes Dan Support Vector Machine (SVM) Untuk Klasifikasi Kelayakan Pemberian Pinjaman,” Infotek J. Inform. Dan Teknol., vol. 6, no. 2, pp. 513–523, Jul. 2023, doi: 10.29408/jit.v6i2.20059.
J. Bergstra and Y. Bengio, “Random Search for Hyper-Parameter Optimization,” J. Mach. Learn. Res., vol. 13, pp. 281–305, 2012.
A. F. Hamdani, D. Swanjaya, and R. Helilintar, “Facebook Prophet Model with Bayesian Optimization for USD Index Prediction,” JUITA J. Inform., vol. 11, no. 2, p. 293, Nov. 2023, doi: 10.30595/juita.v11i2.17880.
R. Ahmad, B. Andriska Candra P, and A. Muliawan Nur, “Penggunaan Metode Backpropagation Pada Jaringan Syaraf Tiruan Untuk Intrusion Detection System,” Infotek J. Inform. Dan Teknol., vol. 3, no. 2, pp. 123–130, Aug. 2020, doi: 10.29408/jit.v3i2.2317.
A. Muliawan Nur and B. Harianto, “Komparasi Algoritma SVM Dan SVM Berbasis PSO Dalam Menganalisa Kinerja Guru SMAN 3 Selong,” Infotek J. Inform. Dan Teknol., vol. 2, no. 2, pp. 86–94, 2019, doi: 10.29408/jit.v2i2.1446.
W. R. Pratiwi and R. E. Putra, “Perbandingan Performa Algoritma GA-SVM dan BOA-SVM dalam Mengklasifikasi Artikel Berita Berbahasa Indonesia,” J. Inform. Comput. Sci. JINACS, vol. 2, no. 04, pp. 252–258, Jun. 2021, doi: 10.26740/jinacs.v2n04.p252-258
Aris Sudianto, Lalu Kerta Wijaya, Jumawal Jumawal, and Mahpuz Mahpuz, “Penerapan Aplikasi Warung Media Berbasis Android Guna Meningkatkan Promosi dan Penjualan,” Infotek Jurnal Informatika dan Teknologi, vol. 7, no. 1, pp. 267–275, Jan. 2024, doi: https://doi.org/10.29408/jit.v7i1.24482.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Infotek: Jurnal Informatika dan Teknologi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Semua tulisan pada jurnal ini menjadi tanggung jawab penuh penulis. Jurnal Infotek memberikan akses terbuka terhadap siapapun agar informasi dan temuan pada artikel tersebut bermanfaat bagi semua orang. Jurnal Infotek ini dapat diakses dan diunduh secara gratis, tanpa dipungut biaya sesuai dengan lisense creative commons yang digunakan.Jurnal Infotek is licensed under a Creative Commons Attribution 4.0 International License.
Statistik Pengunjung