Implementasi Algoritma K-Means Clustering Dalam Mengelompokkan Kepatuhan Wajib Pajak Bumi dan Bangunan Dengan Optimasi Elbow

Authors

DOI:

https://doi.org/10.29408/jit.v8i1.28644

Keywords:

Clustering, Data Mining, K-Means, Land and Building Tax (PBB)

Abstract

Land and Building Tax (Pajak Bumi dan Bangunan, or PBB) is one of the primary sources of regional revenue that plays a significant role in supporting development across various regions. Therefore, efforts to improve tax compliance must be enhanced through various strategies, such as continuous socialization and education, to raise awareness of the importance of paying taxes. Additionally, improving the quality of services is essential. This study aims to classify the compliance levels of PBB taxpayers in Sakra District using the K-Means Clustering algorithm. The data used in this research is the 2023 PBB dataset for Sakra District, comprising 376 entries and involving five key attributes: land area, building area, PBB assessment, payment status, and penalties. The results obtained from processing using the K-Means algorithm indicate an optimal number of clusters, as follows: Cluster 1 represents a high compliance level, consisting of 355 items; Cluster 2 represents a moderate compliance level, consisting of 18 items; and Cluster 3 represents a low compliance level, consisting of 3 items. These clustering outcomes can serve as a reference for authorities in formulating more targeted strategies to enhance tax compliance through improved education and services in the future.

References

H. Pratiwi, M. Muhaimin, and W. O. Rayyani, “Kontribusi Pajak Bumi Dan Bangunan (Pbb) Dalam Meningkatkan Penerimaan Pajak Daerah,” Amnesty J. Ris. Perpajak., vol. 3, no. 1, pp. 24–30, 2020.

N. Wulandari and D. Wahyudi, “Pengaruh Pengetahuan Perpajakan, Sanksi Pajak, Kesadaran Wajib Pajak, dan Kualitas Pelayanan Pajak terhadap Kepatuhan Wajib Pajak dalam Membayar Pajak Bumi dan Bangunan di Desa Mranggen Kabupaten Demak,” J. Pendidik. Tambusai, vol. 6, no. 2, pp. 14853–14870, 2022.

A. M. Nur, M. Saiful, H. Bahtiar, and M. T. Hidayat, “Penerapan Algoritma K-Means Clustering Dalam Mengelompokkan Smartphone Yang Rekomendasi Berdasarkan Spesifikasi,” Infotek J. Inform. dan Teknol., vol. 7, no. 2, pp. 478–488, 2024.

S. Suhartini and R. Yuliani, “Penerapan Data Mining untuk Mengcluster Data Penduduk Miskin Menggunakan Algoritma K-Means di Dusun Bagik Endep Sukamulia Timur,” Infotek J. Inform. dan Teknol., vol. 4, no. 1, pp. 39–50, 2021, doi: 10.29408/jit.v4i1.2986.

T. P. Sari, A. L. Hananto, E. Novalia, T. Tukino, and S. S. Hilabi, “Implementasi Algoritma K-Means dalam Analisis Klasterisasi Penyebaran Penyakit Hiv/Aids,” Infotek J. Inform. dan Teknol., vol. 6, no. 1, pp. 104–114, 2023.

A. Hidayat and A. Muliawan Nur, “Implementasi Algoritma K-Means Untuk Klasterisasi Peserta Keluarga Berencana Berdasarkan Tingkat Risiko Kehamilan Di Desa Pringgasela Selatan,” Nopember, vol. 1, no. 2, pp. 103–117, 2023.

N. Nurhidayati, L. Mauliya, and S. Suhartini, “Clustering Data Pasien Covid Berdasarkan Usia dan Gejala Menggunakan Algoritma K-Means,” Infotek J. Inform. dan Teknol., vol. 6, no. 2, pp. 443–452, 2023, doi: 10.29408/jit.v6i2.17488.

A. M. Nur, M. F. Wazdi, B. Harianto, and M. F. Zaini, “Implementation of Naive Bayes Algorithm in Analyzing Acceptance of Poor Student Assistance,” J. Phys. Conf. Ser., vol. 1539, no. 1, 2020, doi: 10.1088/1742-6596/1539/1/012018.

Z. Setiawan et al., BUKU AJAR DATA MINING. PT. Sonpedia Publishing Indonesia, 2023.

W. P. Hidayanti, “Penerapan Algoritma K-Nearest Neighbor Untuk Klasifikasi Efektivitas Penjualan Vape (Rokok Elektrik) pada †œLombok Vape Onâ€,” Infotek J. Inform. dan Teknol., vol. 3, no. 2, pp. 104–114, 2020.

O. Prastiwi and S. Mulyati, “PENERAPAN ALGORITME K-MEANS CLUSTERING DALAM PENGELOMPOKAN PENYAKIT PASIEN PADA UPTD PUSKESMAS WURYANTORO,” in Prosiding Seminar Nasional Mahasiswa Fakultas Teknologi Informasi (SENAFTI), 2023, pp. 577–586.

N. K. Zuhal, “Study Comparison K-Means Clustering Dengan Algoritma Hierarchical Clustering: AHC, K-Means Clustering, Study Comparison,” in Seminar Nasional Teknologi & Sains, 2022, pp. 200–205.

M. Miranda, N. Rahaningsih, and R. D. Dana, “Analisis Clustering Data Anak Balita di Posyandu Kampung Sukarame Menggunakan Algoritma K-Means,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 6, no. 1, pp. 136–141, 2024.

P. W. Rahayu et al., Buku Ajar Data Mining. PT. Sonpedia Publishing Indonesia, 2024.

J. F. Kolatung, “Analisis Tingkat Kepatuhan Wajib Pajak Bumi Dan Bangunan Di Kota Manado,” J. EMBA J. Ris. Ekon. Manajemen, Bisnis dan Akunt., vol. 9, no. 2, pp. 1006–1014, 2021.

A. Waruwu, M. Yetri, and F. Setiawan, “Implementasi Data Mining Dalam Mengelompokkan Data penduduk Kurang Mampu Menggunakan Metode K-Means Clustering,” J. Sist. Inf. Triguna Dharma (JURSI TGD), vol. 2, no. 6, pp. 945–955, 2023

Aris Sudianto, Lalu Kerta Wijaya, Jumawal Jumawal, and Mahpuz Mahpuz, “Penerapan Aplikasi Warung Media Berbasis Android Guna Meningkatkan Promosi dan Penjualan,” Infotek Jurnal Informatika dan Teknologi, vol. 7, no. 1, pp. 267–275, Jan. 2024, doi: https://doi.org/10.29408/jit.v7i1.24482.

Downloads

Published

20-01-2025

How to Cite

Nur, A. M., Hariman Bahtiar, & Mila Agustiarini Jannah. (2025). Implementasi Algoritma K-Means Clustering Dalam Mengelompokkan Kepatuhan Wajib Pajak Bumi dan Bangunan Dengan Optimasi Elbow. Infotek: Jurnal Informatika Dan Teknologi, 8(1), 181–192. https://doi.org/10.29408/jit.v8i1.28644

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.