Penerapan Algoritma Apriori Dalam Mengidentifikasi Pola Perilaku Belanja Konsumen
DOI:
https://doi.org/10.29408/jit.v8i2.31105Keywords:
Apriori Algorithm, Shopping Interest Pattern, Retail StoresAbstract
The advancement of digital technology has brought significant changes to data management in the commercial sector, especially in retail stores. This study aims to apply the Apriori algorithm to identify patterns of consumer shopping behavior at D&D Mart, Jerowaru District, East Lombok, Indonesia. Data were collected through observation and interviews with customers. Data processing was conducted using Google Colaboratory to obtain visualizations and calculate association rules. The results show that the combination of coffee, detergent, and sugar products has a support value of 31% and a confidence level of 100%, indicating a very strong purchasing pattern for these products to occur together. This finding provides valuable insights for store owners in developing marketing strategies, such as product placement for items frequently purchased together, bundled promotional offers, and more optimal stock management. Overall, this study demonstrates that the Apriori algorithm is effective for analyzing sales transaction data in retail stores and can support data-driven business decision-making to enhance operational effectiveness and customer satisfaction.
References
[1] I. Qoniah and A. T. Priandika, “Analisis Market Basket Untuk Menentukan Asossiasi Rule Dengan Algoritma Apriori (Studi Kasus: Tb. Menara),” J. Teknol. dan Sist. Inf, vol. 1, no. 2, pp. 26–33, 2020.
[2] P. N. Harahap and S. Sulindawaty, “Implementasi Data Mining Dalam Memprediksi Transaksi Penjualan Menggunakan Algoritma Apriori (Studi Kasus: Pt. Arma Anugerah Abadi Cabang Sei Rampah),” J. Sist. Inf. Kaputama, vol. 4, no. 1, pp. 54–61, 2020.
[3] A. Prasetyo, R. Sastra, and N. Musyaffa, “Implementasi data mining untuk analisis data penjualan dengan menggunakan algoritma Apriori (Studi kasus Dapoerin’s),” J. Khatulistiwa Inform., vol. 8, no. 2, 2020.
[4] R. Takdirillah, “Penerapan Data Mining Menggunakan Algoritma Apriori Terhadap Data Transaksi Penjualan Bisnis Ritel,” Edumatic J. Pendidik. Inform., vol. 4, no. 1, pp. 37–46, 2020.
[5] I. Asana, I. G. I. Sudipa, A. Mayun, N. P. S. Meinarni, and D. V Waas, “Aplikasi Data Mining Asosiasi Barang Menggunakan Algoritma Apriori-TID,” INFORMAL Informatics J, vol. 7, no. 1, p. 38, 2022.
[6] R. Saputra and A. J. P. Sibarani, “Implementasi data mining menggunakan algoritma apriori untuk meningkatkan pola penjualan obat,” JATISI (Jurnal Tek. Inform. Dan Sist. Informasi), vol. 7, no. 2, pp. 262–276, 2020.
[7] S. Sunarti, F. Handayanna, and E. Irfiani, “Analisa pola penjualan makanan dengan penerapan algoritma apriori,” Techno. Com, vol. 20, no. 4, pp. 478–488, 2021.
[8] D. Sunyoto and A. Mulyono, “Manajemen Bisnis Retail,” Suparyanto dan Rosad, vol. 5, no. 3, pp. 248–253, 2022.
[9] A. M. Nur, M. F. Wazdi, B. Harianto, and M. F. Zaini, “Implementation of Naive Bayes Algorithm in Analyzing Acceptance of Poor Student Assistance,” J. Phys. Conf. Ser., vol. 1539, no. 1, 2020, doi: 10.1088/1742-6596/1539/1/012018.
[10] A. M. Nur, W. Nursali, and I. F. Nurhidayati, “Penerapan Metode Naïve Bayes Untuk Penentuan Penerima Beasiswa Program Indonesia Pintar,” Infotek J. Inform. dan Teknol., 2024.
[11] A. Triayudi and S. Sumiati, “Implementasi Klasifikasi Data Mining Untuk Penentuan Kelayakan Pemberian Kredit dengan Menggunakan Algoritma Naïve Bayes,” J. Sist. Komput. dan Inform., vol. 4, no. 1, 2022.
[12] P. M. S. Tarigan, J. T. Hardinata, H. Qurniawan, M. Safii, and R. Winanjaya, “Implementasi data mining menggunakan algoritma apriori dalam menentukan persediaan barang: Studi kasus: Toko sinar harahap,” J. Janitra Inform. dan Sist. Inf., vol. 2, no. 1, pp. 9–19, 2022.
[13] A. O. B. Ginting, “Penerapan Data Mining Korelasi Penjualan Spare Part Mobil Menggunakan Metode Algoritma Apriori (Studi Kasus: CV. Citra Kencana Mobil),” J. Inf. Technol., vol. 1, no. 2, pp. 70–77, 2021.
[14] F. A. Sianturi, “Penerapan Algoritma Apriori Untuk Penentuan Tingkat Pesanan,” Mantik Penusa, vol. 2, no. 1, pp. 50–57, 2018.
[15] M. Arifin and F. Helmi, “Analisis Perbandingan Algoritma Asosiasi Data Mining Pada Minimarket Adi Poday Dengan Google Collab,” J. Algoritm., vol. 22, no. 1, pp. 103–114, 2025
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Infotek: Jurnal Informatika dan Teknologi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Semua tulisan pada jurnal ini menjadi tanggung jawab penuh penulis. Jurnal Infotek memberikan akses terbuka terhadap siapapun agar informasi dan temuan pada artikel tersebut bermanfaat bagi semua orang. Jurnal Infotek ini dapat diakses dan diunduh secara gratis, tanpa dipungut biaya sesuai dengan lisense creative commons yang digunakan.
Jurnal Infotek is licensed under a Creative Commons Attribution 4.0 International License.
Statistik Pengunjung