Optimasi Mobilenetv2 Dengan Transfer Learning Untuk Klasifikasi Penyakit Daun Cabai

Authors

  • Rizkon Jajila Universitas Muhadi Setiabudi
  • Nur Ariesanto Ramdhan Universitas Muhadi Setiabudi
  • Puji Wahyuningsih Universitas Muhadi Setiabudi
  • Bambang Irawan Universitas Muhadi Setiabudi

DOI:

https://doi.org/10.29408/jit.v9i1.33812

Keywords:

MobileNetV2, Transfer Learning, Chili Leaf Disease, Image Classification, Smart Agriculture

Abstract

This research effort seeks to establish a robust classification model for chili leaf diseases through optimization of the MobileNetV2 architecture using transfer learning methodology. The presence of diseases in chili plants is often a major barrier to agricultural productivity, necessitating the development of a rapid and accurate early detection system. The dataset used for this investigation includes six different leaf condition categories, specifically: Bacterial Spot, Cercospora Leaf Spot, Leaf Curl Virus, Healthy Leaf, Nutrient Deficiency, and White Spot. The investigation process begins with an image pre-processing phase and the application of data augmentation techniques, which aim to increase the variability of the training data while simultaneously reducing the risk of overfitting. Next, the model is trained using pre-trained weights from ImageNet, which are adjusted to align with the inherent visual characteristics of chili leaves. Model evaluation is conducted rigorously based on accuracy, precision, recall, and F1-score metrics. The experimental results demonstrate outstanding performance, with the model achieving an accuracy rate of 99%, an average F1-score of 0.99, and a validation loss of 0.07. These figures demonstrate the model's highly competent generalization ability when applied to new data. Analysis facilitated by a confusion matrix found a very low error rate, with only 11 images (0.73%) misclassified out of a total of 1,500 test images. These results support the assertion that MobileNetV2 optimization is highly efficient and accurate in identifying chili leaf diseases. This model has significant potential for integration into mobile devices or digital image-based smart farming systems, thereby assisting farmers in making informed decisions in real time.

Author Biographies

Nur Ariesanto Ramdhan, Universitas Muhadi Setiabudi

Dosen Program Studi Teknik Informatika Universitas Muhadi Setiabudi

Puji Wahyuningsih, Universitas Muhadi Setiabudi

Dosen Program Studi Teknik Informatika Universitas Muhadi Setiabudi

Bambang Irawan, Universitas Muhadi Setiabudi

Dosen Program Studi Teknik Informatika Universitas Muhadi Setiabudi

References

[1] H. Mukaromah, A. Ikhsanudin, F. Arianto, Ningsiah, and S. Lestari, “Penerapan Smart Farming Untuk Budidaya Cabai Dalam Greenhouse,” Aisyah J. Informatics Electr. Eng., vol. 5, no. 2, pp. 207–217, Aug. 2023, doi: 10.30604/jti.v5i2.227.

[2] N. Putri Arafa, S. Rahma Basri, R. Ratnasari, and R. Adi Saputra, “Klasifikasi Penyakit Pada Daun Tanaman Cabai Dengan Pendekatan Artificial Neural Network (Ann),” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 6, pp. 12865–12871, Nov. 2024, doi: 10.36040/jati.v8i6.12140.

[3] L. S. Riva and J. Jayanta, “Deteksi Penyakit Tanaman Cabai Menggunakan Algoritma YOLOv5 Dengan Variasi Pembagian Data,” J. Inform. J. Pengemb. IT, vol. 8, no. 3, pp. 248–254, Sep. 2023, doi: 10.30591/jpit.v8i3.5679.

[4] C. T. Yen and C. Y. Tsao, “Lightweight Convolutional Neural Network For Chest X-Ray Images Classification,” Sci. Rep., vol. 14, no. 1, pp. 1–23, 2024, doi: 10.1038/s41598-024-80826-z.

[5] M. D. R. Kamble, M. S. K. Gadale, M. D. N. Pawar, M. G. D. Shedage, and M. M. Mahajan, “Leaf Disease Detection System,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 12, no. 3, pp. 160–164, Mar. 2024, doi: 10.22214/ijraset.2024.58699.

[6] M. J. Setiawan, Budi Nugroho, and Anggraini Puspita Sari, “Klasifikasi Penyakit Daun Tanaman Menggunakan Algoritma CNN dan Random Forest,” Teknologi, vol. 13, no. 2, pp. 12–18, Jul. 2023, doi: 10.26594/teknologi.v13i2.3739.

[7] Y. Zhang et al., “Early Detection And Lesion Visualization Of Pear Leaf Anthracnose Based On Multi-Source Feature Fusion Of Hyperspectral Imaging,” Front. Plant Sci., vol. 15, Oct. 2024, doi: 10.3389/fpls.2024.1461855.

[8] P. T. U. Prasetyo, B. Santoso, and S. Kacung, “Sistem Deteksi Penyakit Pada Daun Tanaman Kentang Menggunakan Metode Cnn Arsitektur Vgg-Net,” J. Inform. Teknol. dan Sains, vol. 7, no. 2, pp. 777–784, May 2025, doi: 10.51401/jinteks.v7i2.5758.

[9] M. Saiful, L. M. Samsu, and F. rahman, “Sistem Deteksi Infeksi COVID-19 Pada Hasil X-Ray Rontgen Menggunakan Algoritma Convolutional Neural Network (CNN),” Infotek J. Inform. dan Teknol., vol. 4, no. 2, pp. 217–227, Jul. 2021, doi: 10.29408/JIT.V4I2.3582.

[10] Rohima, Hariyen Ulfa, Yuliani, Hafiz Maulana, L. Fimawahib, and Fauzi Erwis, “Akurasi Citra Image Penyakit Daun Kentang Berdasarkan Citra Sehat, Citra Early Blight, Dan Citra Late Blight Menggunakan Convolutional Neural Network (CNN),” RJOCS (Riau J. Comput. Sci., vol. 10, no. 2, pp. 167–175, Jul. 2024, doi: 10.30606/rjocs.v10i2.2862.

[11] N. Bayu Aji, T. Raharjo Yudantoro, Z. Safitri, S. Beta Kuntardjo, and K. Santoso, “Application of MobileNetV2-Based Deep Learning in Detecting Diseases in Chili Plants,” J. Informatics, Inf. Syst. Softw. Eng. Appl., vol. 7, no. 2, pp. 203–212, 2025.

[12] J. Yao, S. N. Tran, S. Sawyer, and S. Garg, “Machine Learning For Leaf Disease Classification: Data, Techniques And Applications,” Artif. Intell. Rev., vol. 56, no. S3, pp. 3571–3616, Dec. 2023, doi: 10.1007/s10462-023-10610-4.

[13] C. Pal, S. Karmakar, I. Mukherjee, and P. P. Chakrabarti, “A Lightweight And Explainable CNN Model For Empowering Plant Disease Diagnosis,” Sci. Rep., vol. 15, no. 1, p. 30720, Aug. 2025, doi: 10.1038/s41598-025-94083-1.

[14] S. Rahman, M. Elveny, M. Ramli, and D. Manurung, “Mobilechilinet: Convolutional Neural Network For Chili Leaves Classification,” IAES Int. J. Artif. Intell., vol. 14, no. 5, pp. 3757–3770, 2025, doi: 10.11591/ijai.v14.i5.pp3757-3770.

[15] E. L. P. Ristanti, “Analisis Dan Perbandingan Arsitektur Vgg16 Dan Mobilenetv2 Untuk Klasifikasi Dan Identifikasi Penyakit Daun Pada Tanaman Cabai Menggunakan Cnn,” Sci. J. Ilm. Sains dan Teknol., vol. 2, no. 9, pp. 216–226, 2024, [Online]. Available: https://doi.org/10.572349/scientica.v2i9.2381

[16] D. B. Daş, “An Intell igent a nd L ightwei ght Approach Based on MobilenetV 2 Archi tecture for Ident i fy ing Brain Tumors,” vol. 8, no. 2, pp. 392–399, 2025, doi: 10.35377/saucis...

[17] D. Chennamsetti, “Comparative Study of Deep Learning Techniques for Detecting Corn Plant Leaf Diseases Using Transfer Learning,” J. Adv. Plant Biol., vol. 1, no. 4, pp. 7–19, Apr. 2025, doi: https://doi.org/10.14302/issn.2638-4469.japb-25-5395.

[18] M. Xu, S. Yoon, Y. Jeong, and D. S. Park, “Transfer Learning For Versatile Plant Disease Recognition Withlimited Data,” Front.Plant Sci., vol. 13, no. November, pp. 1–14, 2022, doi: 10.3389/fpls.2022.1010981.

[19] F. Dubourvieux, G. Lapouge, A. Loesch, B. Luvison, and R. Audigier, “Cumulative Unsupervised Multi-Domain Adaptation For Holstein Cattle Re-Identification,” Artif. Intell. Agric., vol. 10, pp. 46–60, 2023, doi: 10.1016/j.aiia.2023.10.002.

[20] I. Fathurrahman, M. Djamaluddin, Z. Amri, and M. N. Wathani, “Klasifikasi Motif Batik Nusantara Menggunakan Vision Transformer (ViT) Berbasis Deep Learning,” Infotek J. Inform. dan Teknol., vol. 8, no. 2, pp. 511–522, Jul. 2025, doi: 10.29408/JIT.V8I2.31108

[21] A. Sudianto, B. A. C. Permana, Muhammad Wasil, and Harianto, “Penerapan Sistem Payment Gateway Pada E-Commerce Sebagai Upaya Peningkatan Penjualan”, INFOTEK, vol. 8, no. 1, pp. 271–279, Jan. 2025. doi: 10.29408/jit.v8i1.28323.

Downloads

Published

20-01-2026

How to Cite

Jajila, R., Ramdhan, N. A., Wahyuningsih, P., & Irawan, B. (2026). Optimasi Mobilenetv2 Dengan Transfer Learning Untuk Klasifikasi Penyakit Daun Cabai. Infotek: Jurnal Informatika Dan Teknologi, 9(1), 296–307. https://doi.org/10.29408/jit.v9i1.33812

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.