Probabilitas Pembayaran Kredit Tepat Waktu Menggunakan Algoritma Naive Bayes Pada Koperasi Serba Usaha Daruzzakah Rensing Lombok Timur

Nur Hidayati, Suhartini Suhartini


In general, the notion of a cooperative is a business entity that is owned and managed by its members. Meanwhile, multi-business cooperatives are cooperatives whose business activities are in various economic aspects such as savings and loans, production, consumption and services, which consist of people or cooperative legal entities by basing their business activities on the cooperative principle as well as a people's economic movement based on the principle of kinship. This research took place in one of the cooperatives in the village of Rensing, East Lombok, with the cooperative name "Daruzzakah". This cooperative is a multi-business cooperative with one type of activity is to provide savings and loans or credit to its members. The purpose of this cooperative is as an alternative means of borrowing money or credit as well as trying to prevent its members from loan sharks. However, in practice there are problems, namely the number of delays and credit payments that are not on time. Judging from the large number of customers who borrow funds, a strategy is needed to be able to fulfill all of these activities, the increasing number of prospective customers applying for credit with different economic conditions, requiring accuracy in making credit decisions. To avoid this, it should be necessary to analyze member data to determine the feasibility of providing credit, so that it can be classified as whether or not to get a loan. Data analysis can be done using data mining techniques. For this reason, the authors try to provide solutions to these problems by applying the naïve Bayes algorithm in predicting and determining creditworthiness. The Naive Bayes algorithm has been widely used by previous researchers and has high accuracy values. In this study, the Naive Bayes algorithm was used and resulted in an accuracy value of 96.45% with an AUC value of 0.942 which means it is a good classification.


Naïve Bayes Algorithm; Alternative; Data Mining; Cooperative; Rentenir.

Full Text:



W. M. Habibulloh, S. Topiq, U. Adhirajasa, R. Sanjaya, U. Adhirajasa, and R. Sanjaya, “ALGORITMA NAIVE BAYES PADA KSP,†vol. 3, no. 1, pp. 92–99, 2021.

Y. Kurnia and E. D. Kusuma, “Pendugaan Kredit Macet Pada Koperasi Simpan Pinjam Flamboyan Binaan PPSW Jakarta Dengan Menggunakan Komparasi Algoritma Naïve Bayes dan C4. 5,†Algor, vol. 2, no. 1, pp. 66–74, 2020.

A. Rifai and R. Aulianita, “Komparasi Algoritma Klasifikasi C4.5 dan Naïve Bayes Berbasis Particle Swarm Optimization Untuk Penentuan Resiko Kredit,†J. Speed - Sentra Penelit. Eng. dan Edukasi, vol. 10, no. 2, 2018, [Online]. Available:

Wahyu Hadikristanto; Muhammad Suprayogi, “SIGMA - Jurnal Teknologi Pelita Bangsa SIGMA - Jurnal Teknologi Pelita Bangsa,†SIGMA - J. Teknol. Pelita Bangsa 167, vol. 10, no. September, pp. 167–172, 2019.

S. Lestari, Akmaludin, and M. Badrul, “Implementasi Klasifikasi Naive Bayes Untuk Prediksi Kelayakan Pemberian Pinjaman Pada Koperasi Anugerah Bintang Cemerlang,†Prosisko, vol. 7, no. 1, pp. 8–16, 2020, [Online]. Available:

P. Dengan et al., “1) , 2),†vol. 10, pp. 75–86, 2020.

D. A. Kurniawan and Y. I. Kurniawan, “Aplikasi Prediksi Kelayakan Calon Anggota Kredit Menggunakan Algoritma Naïve Bayes,†J. Teknol. dan Manaj. Inform., vol. 4, no. 1, 2018, doi: 10.26905/jtmi.v4i1.1831.

D. Puspitasari, S. S. Al Khautsar, and W. P. Mustika, “Algoritma Naïve Bayes Untuk Memprediksi Kredit Macet Pada Koperasi Simpan Pinjam,†J. Inform. Upgris, vol. 4, no. 2, 2019, doi: 10.26877/jiu.v4i2.2919.

M. Kelayakan and K. Rumah, “1) , 2),†vol. 10, pp. 117–134, 2020.

S. Sumanto, L. S. Marita, L. Mazia, and T. W. Ratnasari, “Analisis Kelayakan Kredit Rumah Menggunakan Metode Naïve Bayes untuk Mengurangi Kredit Macet,†Appl. Inf. Syst. Manag., vol. 4, no. 1, pp. 17–22, 2021, doi: 10.15408/aism.v4i1.20274.

N. Pransiska and A. H. Mirza, “Bina Darma Conference on Computer Science PENERAPAN DATA MINING PREDIKSI PENJUALAN BARANG ELEKTRONIK TERLARIS MENGGUNAKAN ALGORITMA NAÃVE BAYES ( Study Kasus : Planet Cash And Credit Cabang Muara Enim ) Bina Darma Conference on Computer Science,†pp. 2157–2169, 2016.

P. Adaboost, U. Meningkatkan, A. Naive, B. Pada, P. Pendapatan, and P. Film, “PENERAPAN ADABOOST UNTUK MENINGKATKAN AKURASI NAIVE BAYES BAYES PADA PREDIKSI PENDAPATAN PENJUALAN FILM,†vol. 14, no. 2, pp. 181–188, 2020.

R. I. Borman and M. Wati, “Penerapan Data Maining Dalam Klasifikasi Data Anggota Kopdit Sejahtera Bandarlampung Dengan Algoritma Naïve Bayes,†J. Ilm. Fak. Ilmu Komput. Issn, vol. 9, no. 1, pp. 25–34, 2020.

D. Supriadi et al., “PREDICTION OF COOPERATIVE LOAN FEASIBILITY USING THE K- NEAREST NEIGHBOR ALGORITHM,†no. 85, pp. 39–46, 2020, doi: 10.33480/pilar.v17i1.2183.

S. M. Sudianto Aris, “Penerapan Sistem Informasi Geografis (GIS) dalam Pemetaan Kerajinan Kain Tenun dan Gerabah untuk Meningkatkan Potensi Kerajinan di Kabupaten Lombok Timur,†Infotek J. Inform. dan Teknol. J. Inform. dan Teknol., vol. 1, no. 2, pp. 64–71, 2018



  • There are currently no refbacks.

Copyright (c) 2021 Infotek : Jurnal Informatika dan Teknologi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

View My Stats