Prediksi Tingkat Kelancaran Kredit BSU BMT Tunas Harapan Syari’ah Pringgasela Kabupaten Lombok Timur Menggunakan Algoritma Neural Network

Authors

DOI:

https://doi.org/10.29408/jit.v4i2.3580

Keywords:

Credit, Neural Network Algorithm, data mining, forecasting

Abstract

The role of credit in a cooperative is very important. With the credit can be a source of profit for the cooperative. The cooperative was founded with the aim of prospering its members. One of the advantages is that cooperative members can apply for credit loans. To approve the proposed loan, it is necessary to analyze the credit submitted by the members. This has become one of the difficulties for several cooperatives, one of which is KSU BMT Tunas Harapan Syari'ah which is located in thePringgasela village, Pringgasela District, East Lombok Regency. The problem that often arises is that the analysis conducted is often incorrect, resulting in a prolonged bad credit in installment payments. The reason is that cooperatives always use statistical data which is sometimes inaccurate because there is no processing using data processing methods. Therefore, the neural network data mining method can be used as a tool to analyze which customers are problematic and not problematic. From the results of the research that has been done, it produces an accuracy of 96.19% and an AUC of 0.976

References

A. Setiadi, “Penerapan Algoritma Radial Basis Functions untuk Prediksi Kelayakan Pemberian Kredit,†Konf. Nas. Ilmu Sos. Teknol., pp. 607–612, 2017.

E. Buulolo, Data Mining Untuk Perguruan Tinggi, I. Yogyakarta: DEEPUBLISH, 2020.

A. M. Nur, M. F. Wazdi, B. Harianto, and M. F. Zaini, “Implementation of Naive Bayes Algorithm in Analyzing Acceptance of Poor Student Assistance,†Journal of Physics: Conference Series, vol. 1539, no. 1. IOP Publishing, p. 12018, 2020.

N. Iriadi, “Komparasi Algoritma Klasifikasi Data Mining Dalam Penentuan Resiko Kredit Pada Koperasi Serba Usaha,†Paradigma, vol. XV, no. 2, pp. 192–204, 2013.

I. A. Sucipto, “CREDIT PREDICTION WITH NEURAL NETWORK ALGORITHM,†no. 15, pp. 978–979.

I. T. A. Nur, N. Y. Setiawan, and F. A. Bachtiar, “Perbandingan Performa Metode Klasifikasi Svm , Neural Network , Dan Naïve Bayes Untuk Mendeteksi Kualitas Pengajuan Kredit Di Koperasi Simpan Pinjam,†J. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 4, pp. 445–450, 2019, doi: 10.25126/jtiik.201961352.

A. R. Wicaksono and Y. Rahayu, “Klasifikasi Data Mining Untuk Menentukan Potensi Primkoveri Waleri Menggunakan Algoritma Decision Tree C4.5,†2014.

Yahya and M. H. Nasution, “Penggunaan Algoritma Support Vector Machine (SVM) Untuk Penentuan Kelayakan Pemberian Kredit Koperasi Serba Usaha ‘Daruzzakah Zakah’ Desa Rensing Kecamatan Sakra Lombok Timur Nusa Tenggara Barat,†J. Inform. dan Teknol., vol. 3, no. 1, pp. 32–41, 2020.

Syamsiah, “Pemilihan Model Penentuan Kelayakan Pinjaman Anggota Koperasi Berdasarkan Algoritma Support Vector Machine , Genetic Algorithms , Dan Neural Network,†Fakt. Exacta, vol. 7, no. 2, pp. 141–153, 2014.

S. M. C. Wahyuono, “Pertanggungjawaban Hukum Penyelesaian Pembiayaan Tak Tertagih Di BMT-PSU Malang,†Malang, 2019.

A. M. Nur and B. Harianto, “Komparasi Algoritma SVM Dan SVM Berbasis PSO Dalam Menganalisis Kinerja Guru SMAN 3 Selong,†Infotek J. Inform. dan Teknol., vol. 2, no. 2, pp. 86–94, 2019.

A. P. Windarto, M. R. Lubis, and Solikhun, “Model Arsitektur Neural Network Dengan Backpropogation Pada Prediksi Total Laba Rugi Komprehensif Bank Umum Konvensional,†Kumpul. J. Ilmu Komput., vol. 05, no. 02, pp. 147–158, 2018.

I. Fathurrahman, A. Muliawan Nur, and F. Fathurrahman, “Identifikasi Kematangan Buah Mentimun Berbasis Citra Digital Menggunakan Jaringan Syaraf Tiruan Backpropagation,†Infotek J. Inform. dan Teknol., vol. 2, no. 1, pp. 27–33, 2019, doi: 10.29408/jit.v2i1.976.

I. Fathurrahman and I. Gunawan, “Pengenalan Citra Logo Kendaraan Menggunakan Metode Gray Level Co-Occurence Matrix (Glcm) dan Jst-Backpropagation,†Infotek J. Inform. dan Teknol., vol. 1, no. 1, pp. 47–55, Jan. 2018, doi: 10.29408/jit.v1i1.894.

A. Sudianto and J. Sugiantara, “Website as Foundation Information Media under the auspices of Nahdlatul Wathan,†J. Phys. Conf. Ser., vol. 1539, no. 1, pp. 3–8, 2020, doi: 10.1088/1742-6596/1539/1/012024

Downloads

Additional Files

Published

31-07-2021

How to Cite

Nur, A. M., Fathurrahman, I., & Yahya, Y. (2021). Prediksi Tingkat Kelancaran Kredit BSU BMT Tunas Harapan Syari’ah Pringgasela Kabupaten Lombok Timur Menggunakan Algoritma Neural Network. Infotek: Jurnal Informatika Dan Teknologi, 4(2), 205–216. https://doi.org/10.29408/jit.v4i2.3580

Most read articles by the same author(s)

1 2 3 > >>