AHP dan WP: Metode dalam Membangun Sistem Pendukung Keputusan (SPK) Karyawan Terbaik

Ahmad Gilang Ramadhan, Reva Ragam Santika


The best employee selection is an award given by the company to employees who can encourage all employees to improve their performance. However, for the assessment is usually still done subjectively and manually, and at least the support system in making decisions into this problem can be a problem. This study aims to build a decision support system in the selection of the best employees in accordance to the requirements specified by the company by using the Prototype model. Meanwhile, the method applies to test the consistency and accuracy of this system use the Analytical Hierarchy Process (AHP) and Weighted Product (WP). In selecting the best employees, there are several criteria to be assessed, namely: Knowledge, Ability, Attitude, Attendance, and Cooperation, as well as the number of subjects of this study consisting of five people. Our findings show that the accuracy rate of this system is below 10%, and the consistency index value is correct, so it can be used with a relative number of initial weights = 1. After testing or testing, the results obtained are all components or modules in this system already successfully and properly used as it should be.


Analytical Hierarchy Process; Decision Support System; Weighted Product

Full Text:



Amiruddin, D., Nuryani, E., & Faturrohmah, H. (2018). Rancangan Aplikasi Sistem Pendukung Keputusan (SPK) Pengangkatan Karyawan Menggunakan Metode Simple Additive Weighting (SAW) Pada PT. Ultra Prima Plast-Flexible Packaging. Jurnal Sistem Informasi Dan Informatika, 1(01), 1–18.

Arab, I., Bourhnane, S., & Kafou, F. (2018). Unifying modeling language-merise integration approach for software design. International Journal of Advanced Computer Science and Applications, 9(4), 6–12. https://doi.org/10.14569/IJACSA.2018.090402

Arifin, S. R., & Mintamanis, J. C. (2019). Decision Support System for Determining Thesis Supervisor using A Weighted Product (WP) Method. Jurnal Online Informatika, 3(2), 80–85.

Fashoto, S. G., Amaonwu, O., & Afolorunsho, A. (2018). Development of A Decision Support System on Employee Performance Appraisal using AHP Model. JOIV: International Journal on Informatics Visualization, 2(4), 262–267.

Fujita, H., & Cimr, D. (2019). Decision support system for arrhythmia prediction using convolutional neural network structure without preprocessing. Applied Intelligence, 49(9), 3383–3391.

Ghavami, S. M. (2019). Multi-criteria spatial decision support system for identifying strategic roads in disaster situations. International Journal of Critical Infrastructure Protection, 24, 23–36.

Hassan, A. R., & Subasi, A. (2017). A decision support system for automated identification of sleep stages from single-channel EEG signals. Knowledge-Based Systems, 128, 115–124.

Jahani, A. (2019). Sycamore failure hazard classification model (SFHCM): an environmental decision support system (EDSS) in urban green spaces. International Journal of Environmental Science and Technology, 16(2), 955–964.

Jan, S. R., Shah, S. T. U., Johar, Z. U., Shah, Y., & Khan, F. (2016). An innovative approach to investigate various software testing techniques and strategies. International Journal of Scientific Research in Science, Engineering and Technology, 2(2), 682–689.

Juliana, J., Jasmir, J., & Jusia, P. A. (2017). Decision Support System for Supplier Selection using Analytical Hierarchy Process (AHP) Method. Scientific Journal of Informatics, 4(2), 158–168.

Kukar, M., VraÄar, P., KoÅ¡ir, D., Pevec, D., & Bosnić, Z. (2019). AgroDSS: A decision support system for agriculture and farming. Computers and Electronics in Agriculture, 161, 260–271.

Listyaningsih, V., & Utami, E. (2018). Decision Support System Performance-Based Evaluation of Village Government using AHP and TOPSIS Methods: Secang Sub-disrtict of Magelang Regency as a case study. International Journal of Intelligent Systems and Applications, 4(18–28).

Mabkhot, M. M., Amri, S. K., Darmoul, S., Al-Samhan, A. M., & Elkosantini, S. (2020). An ontology-based multi-criteria decision support system to reconfigure manufacturing systems. IISE Transactions, 52(1), 18–42.

Malmir, B., Amini, M., & Chang, S. I. (2017). A medical decision support system for disease diagnosis under uncertainty. Expert Systems with Applications, 88, 95–108.

Masri, M. (2016). Penentuan Karyawan Terbaik Dengan Metode Simple Additive Weighting (PDAM Tirta Silaupiasa). JET (Journal of Electrical Technology), 1(1), 36–41.

Mishra, C. D., Jaiswal, R. K., Nema, A. K., Chandola, V. K., & Chouksey, A. (2019). Priority Assessment of Sub-watershed Based on Optimum Number of Parameters Using Fuzzy-AHP Decision Support System in the Environment of RS and GIS. Journal of the Indian Society of Remote Sensing, 47(4), 603–617.

Muhaimin Hasanudin, & Yansen Marli, B. H. (2018). Sistem Pendukung Keputusan Pemilihan Karyawan Terbaik Menggunakan Metode Analytical Hierarchy Process ( Studi Kasus Pada Pt . Bando Indonesia ). Seminar Nasional Teknologi Informasi Dan Multimedia 2018, 6(3), 91–96.

Padmowati, R. de L. E. (2009). Pengukuran Index Konsistensi Dalam Proses Pengambilan Keputusan Menggunakan Metode Ahp. Seminar Nasional Informatika Yogyakarta, (semnasIF), 80–84.

Pereboom, M., Mulder, I. J., Verweij, S. L., van der Hoeven, R. T. M., & Becker, M. L. (2019). A clinical decision support system to improve adequate dosing of gentamicin and vancomycin. International Journal of Medical Informatics, 124, 1–5.

Safitri, K., & Tinus Waruwu, F. (2017). Sistem Pendukung Keputusan Pemilihan Karyawan Berprestasi Dengan Menggunakan Metode Analytical Hieararchy Process (Studi Kasus : PT.Capella Dinamik Nusantara Takengon). 1(1), 12–16.

Sharma, K., & Virmani, J. (2017). A decision support system for classification of normal and medical renal disease using ultrasound images: a decision support system for medical renal diseases. International Journal of Ambient Computing and Intelligence (IJACI), 8(2), 52–69.

Sugiyarti, E., Jasmi, K. A., Basiron, B., Huda, M., Shankar, K., & Maseleno, A. (2018). Decision support system of scholarship grantee selection using data mining. International Journal of Pure and Applied Mathematics, 119(15), 2239–2249.

Turón, A., Aguarón, J., Escobar, M. T., & Moreno-Jiménez, J. M. (2019). A Decision Support System and Visualisation Tools for AHP-GDM. International Journal of Decision Support System Technology (IJDSST), 11(1), 1–19.

DOI: https://doi.org/10.29408/edumatic.v4i1.2163


  • There are currently no refbacks.

Copyright (c) 2020 Edumatic : Jurnal Pendidikan Informatika

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Statistik Pengunjung

Creative Commons License

Edumatic: Jurnal Pendidikan Informatika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.