Analisis Sentimen Publik Program PPPK di Media Sosial X menggunakan Naïve Bayes dan SVM
DOI:
https://doi.org/10.29408/edumatic.v9i2.30065Keywords:
sentiment analysis, social media, naive bayes, pppk, support vector machineAbstract
Sentiment analysis of the Government Employee Program with Work Agreement (PPPK) is important to understand public perception and as a basis for policy evaluation. This study aims to analyze public sentiment towards the PPPK policy and evaluate the performance of the Support Vector Machine (SVM) and Naïve Bayes algorithms in classifying public opinion on social media X. This study is a quantitative study with a data mining approach. The stages begin with collecting data collection of 7,508 tweets and processed through the stages of preprocessing, labeling, feature extraction using TF-IDF, and classification with SVM and Naïve Bayes. Data balancing is done using the Synthetic Minority Oversampling Technique (SMOTE). Our findings show that SVM produces the highest accuracy of 95%, while Naïve Bayes reaches 87%. The application of SMOTE has been shown to improve the performance of both models, especially in recognizing negative sentiment. The advantage of SVM lies in its ability to optimally separate classes through maximum margin, which is effective for high-dimensional text data. Meanwhile, SMOTE plays an important role in balancing class distribution, thereby increasing accuracy, precision, and recall. These findings provide an important basis for policy makers to respond to public opinion more appropriately based on valid and representative data.
References
Anjani, A. F., Anggraeni, D., & Tirta, I. M. (2023). Implementasi Random Forest Menggunakan SMOTE untuk Analisis Sentimen Ulasan Aplikasi Sister for Students UNEJ. Jurnal Nasional Teknologi Dan Sistem Informasi, 9(2), 163–172. https://doi.org/10.25077/TEKNOSI.v9i2.2023
Fitriani, F., Utami, E., & Hartanto, AD. (2022). Analisis Sentimen Masyarakat Terhadap Pelaksanaan P3K Guru Dengan Algoritma Naïve Bayes Dan Decision Tree. TEKNIMEDIA: Teknologi Informasi Dan Multimedia, 3(1), 23–30. https://doi.org/10.46764/teknimedia.v3i1.53
Fitriani, F. (2023). Perbandingan Algoritma Naïve Bayes Dan Knn Dalam Analisis Sentimen Masyarakat Terhadap Pelaksanaan Pppk Guru. Bulletin of Network Engineer and Informatics 1(1), 18–24. https://doi.org/10.59688/bufnets.v1i1.6
Hermawan, M. A., Faqih, A., Dwilestari, G. (2025). Implementasi Akurasi Model Naive Bayes Menggunakan Smote Dalam Analisis Sentimen Pengguna Aplikasi Brimo. Jurnal Informatika Dan Teknik Elektro Terapan, 13(1), 855-862. http://dx.doi.org/10.23960/jitet.v13i1.5748
Hidayat, F. N., & Sugiyono, S. (2023). Analisis Sentimen Masyarakat Terhadap Perekrutan Pppk Pada Twitter Dengan Metode Naive Bayes Dan Support Vector Machine. Jurnal Sains Dan Teknologi, 5(2), 665–672. https://doi.org/10.55338/saintek.v5i2.1359
Hidayatullah, H., Purwantoro, P., & Umaidah, Y. (2023). Penerapan Naive Bayes Dengan Optimasi Information Gain Dan Smote Untuk Analisis Sentimen Pengguna Aplikasi Chatgpt. JATI (Jurnal Mahasiswa Teknik Informatika), 7(3), 1546-1553. https://doi.org/10.36040/jati.v7i3.6887
Karimah, A., Dwilestari, G., & Mulyawan, M. (2024). Analisis Sentimen Komentar Video Mobil Listrik Di Platform Youtube Dengan Metode Naïve Bayes. JATI (Jurnal Mahasiswa Teknik Informatika), 8(1), 767–773. https://doi.org/10.36040/jati.v8i1.8373
Khairunnisa, K., Dewi, S. K., Rahmawati, D. D., & Sari, A. P. (2024). Analisis Sentimen Komentar pada Postingan Instagram " StandWithUs " Menggunakan Klasifikasi Naive Bayes. JURNAL ILMIAH INFORMATIKA, 12(02), 191-199. https://doi.org/10.33884/jif.v12i02.9263
Khairunissabina, K., & Kurniawan, R. (2024). Analisis Sentimen Mengenai Penerimaan Calon Pegawai Negeri Sipil Tahun 2024 Menggunakan Support Vector Machine. Kemajuan: Jurnal Ilmiah Komputer , 21 (1), 132–143. http://dx.doi.org/10.35889/progresif.v21i1.2583
Natasha & R R Suryono. (2025). Analisis Sentimen Pengaruh Korean Wave Di Indonesia Dengan Metode Naive Bayes Dan Support Vector Machine. INOVTEK Polbeng - Seri Informatika., 10(1), 308–319. https://doi.org/10.35314/85x4wd90
Nugroho, A., & Rilvani, E (2023). Penerapan Metode Oversampling SMOTE Pada Algoritma Random Forest Untuk Prediksi Kebangkrutan Perusahaan. Techno.COM, 22(1), 207–214. https://doi.org/10.33633/tc.v22i1.7527
Pamungkas, A. S., & Cahyono, N. (2024). Analisis Sentimen Review ChatGPT di Play Store menggunakan Support Vector Machine dan K-Nearest Neighbor. Edumatic : Jurnal Pendidikan Informatika, 8(1), 1–10. https://doi.org/10.29408/edumatic.v8i1.24114
Pratama, R. F. P., & Maharani, W. (2025). Comparative Analysis of Naive Bayes and SVM for Improved Emotion Classification on Social Media. Edumatic: Jurnal Pendidikan Informatika, 9(1), 11-20.
Rahayu, S., Mz, Y., Bororing, J. E., & Hadiyat, R (2022). Implementasi Metode K-Nearest Neighbor (K-NN) untuk Analisis Sentimen Kepuasan Pengguna Aplikasi Teknologi Finansial FLIP. Edumatic : Jurnal Pendidikan Informatika, 6(1), 98–106. https://doi.org/10.29408/edumatic.v6i1.5433
Rizqiyah, A. M., & Nuryana, I. K. D. (2024). Analisis Sentimen Masyarakat terhadap Kebijakan Iuran Tabungan Perumahan Rakyat ( Tapera ) pada Platform X Menggunakan Algoritma Naïve Bayes Classifier dan Support Vector Machine. JEISBI: (Journal of Emerging Information Systems and Business Intelligence), 05(03), 298–306. https://doi.org/10.26740/jeisbi.v5i3.64074
Sanjaya, T. P. R., Fauzi, A., & Masruriyah, A. F. N. (2023). Analisis sentimen ulasan pada e-commerce shopee menggunakan algoritma naive bayes dan support vector machine. INFOTECH:Jurnal Informatika & Teknologi, 4(1), 16–26. https://doi.org/10.37373/infotech.v4i1.422
Sari, P. K., & Suryono, R. R. (2024). Komparasi Algoritma Support Vector Machine Dan Random Forest Untuk Analisis Sentimen Metaverse. Jurnal MNEMONIC, 7(1), 31–39. https://doi.org/10.36040/mnemonic.v7i1.8977
Sari, D., & Kurniawan, R. (2024). Analisis Sentimen Terhadap Kinerja Program Walikota Medan pada Media Sosial X Menggunakan Support Vector Machine MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(4), 1539-1548. https://doi.org/10.57152/malcom.v4i4.1685
Setiawan, A., & Suryono, R. R. (2024). Analisis Sentimen Ibu Kota Nusantara menggunakan Algoritma Support Vector Machine dan Naïve Bayes. Edumatic: Jurnal Pendidikan Informatika, 8(1), 183–192. https://doi.org/10.29408/edumatic.v8i1.25667
Syah, H., & Witanti, A. (2022). Analisis Sentimen Masyarakat Terhadap Vaksinasi Covid-19 Pada Media Sosial Twitter Menggunakan Algoritma Support Vector Machine ( SVM ). Jurnal Sistem Informasi Dan Informatika (Simika), 5(1). 59-67. https://doi.org/10.47080/simika.v5i1.1411
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Lisyo Hileria Sarumpaet, Ryan Randy Suryono

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Semua tulisan pada jurnal ini adalah tanggung jawab penuh penulis. Edumatic: Jurnal Pendidikan Informatika bisa diakses secara free (gratis) tanpa ada pungutan biaya, sesuai dengan lisensi creative commons yang digunakan.

This work is licensed under a Lisensi a Creative Commons Attribution-ShareAlike 4.0 International License.