Analisis Sentimen Publik Program PPPK di Media Sosial X menggunakan Naïve Bayes dan SVM

Authors

DOI:

https://doi.org/10.29408/edumatic.v9i2.30065

Keywords:

sentiment analysis, social media, naive bayes, pppk, support vector machine

Abstract

Sentiment analysis of the Government Employee Program with Work Agreement (PPPK) is important to understand public perception and as a basis for policy evaluation. This study aims to analyze public sentiment towards the PPPK policy and evaluate the performance of the Support Vector Machine (SVM) and Naïve Bayes algorithms in classifying public opinion on social media X. This study is a quantitative study with a data mining approach. The stages begin with collecting data collection of 7,508 tweets and processed through the stages of preprocessing, labeling, feature extraction using TF-IDF, and classification with SVM and Naïve Bayes. Data balancing is done using the Synthetic Minority Oversampling Technique (SMOTE). Our findings show that SVM produces the highest accuracy of 95%, while Naïve Bayes reaches 87%. The application of SMOTE has been shown to improve the performance of both models, especially in recognizing negative sentiment. The advantage of SVM lies in its ability to optimally separate classes through maximum margin, which is effective for high-dimensional text data. Meanwhile, SMOTE plays an important role in balancing class distribution, thereby increasing accuracy, precision, and recall. These findings provide an important basis for policy makers to respond to public opinion more appropriately based on valid and representative data.

References

Anjani, A. F., Anggraeni, D., & Tirta, I. M. (2023). Implementasi Random Forest Menggunakan SMOTE untuk Analisis Sentimen Ulasan Aplikasi Sister for Students UNEJ. Jurnal Nasional Teknologi Dan Sistem Informasi, 9(2), 163–172. https://doi.org/10.25077/TEKNOSI.v9i2.2023

Fitriani, F., Utami, E., & Hartanto, AD. (2022). Analisis Sentimen Masyarakat Terhadap Pelaksanaan P3K Guru Dengan Algoritma Naïve Bayes Dan Decision Tree. TEKNIMEDIA: Teknologi Informasi Dan Multimedia, 3(1), 23–30. https://doi.org/10.46764/teknimedia.v3i1.53

Fitriani, F. (2023). Perbandingan Algoritma Naïve Bayes Dan Knn Dalam Analisis Sentimen Masyarakat Terhadap Pelaksanaan Pppk Guru. Bulletin of Network Engineer and Informatics 1(1), 18–24. https://doi.org/10.59688/bufnets.v1i1.6

Hermawan, M. A., Faqih, A., Dwilestari, G. (2025). Implementasi Akurasi Model Naive Bayes Menggunakan Smote Dalam Analisis Sentimen Pengguna Aplikasi Brimo. Jurnal Informatika Dan Teknik Elektro Terapan, 13(1), 855-862. http://dx.doi.org/10.23960/jitet.v13i1.5748

Hidayat, F. N., & Sugiyono, S. (2023). Analisis Sentimen Masyarakat Terhadap Perekrutan Pppk Pada Twitter Dengan Metode Naive Bayes Dan Support Vector Machine. Jurnal Sains Dan Teknologi, 5(2), 665–672. https://doi.org/10.55338/saintek.v5i2.1359

Hidayatullah, H., Purwantoro, P., & Umaidah, Y. (2023). Penerapan Naive Bayes Dengan Optimasi Information Gain Dan Smote Untuk Analisis Sentimen Pengguna Aplikasi Chatgpt. JATI (Jurnal Mahasiswa Teknik Informatika), 7(3), 1546-1553. https://doi.org/10.36040/jati.v7i3.6887

Karimah, A., Dwilestari, G., & Mulyawan, M. (2024). Analisis Sentimen Komentar Video Mobil Listrik Di Platform Youtube Dengan Metode Naïve Bayes. JATI (Jurnal Mahasiswa Teknik Informatika), 8(1), 767–773. https://doi.org/10.36040/jati.v8i1.8373

Khairunnisa, K., Dewi, S. K., Rahmawati, D. D., & Sari, A. P. (2024). Analisis Sentimen Komentar pada Postingan Instagram " StandWithUs " Menggunakan Klasifikasi Naive Bayes. JURNAL ILMIAH INFORMATIKA, 12(02), 191-199. https://doi.org/10.33884/jif.v12i02.9263

Khairunissabina, K., & Kurniawan, R. (2024). Analisis Sentimen Mengenai Penerimaan Calon Pegawai Negeri Sipil Tahun 2024 Menggunakan Support Vector Machine. Kemajuan: Jurnal Ilmiah Komputer , 21 (1), 132–143. http://dx.doi.org/10.35889/progresif.v21i1.2583

Natasha & R R Suryono. (2025). Analisis Sentimen Pengaruh Korean Wave Di Indonesia Dengan Metode Naive Bayes Dan Support Vector Machine. INOVTEK Polbeng - Seri Informatika., 10(1), 308–319. https://doi.org/10.35314/85x4wd90

Nugroho, A., & Rilvani, E (2023). Penerapan Metode Oversampling SMOTE Pada Algoritma Random Forest Untuk Prediksi Kebangkrutan Perusahaan. Techno.COM, 22(1), 207–214. https://doi.org/10.33633/tc.v22i1.7527

Pamungkas, A. S., & Cahyono, N. (2024). Analisis Sentimen Review ChatGPT di Play Store menggunakan Support Vector Machine dan K-Nearest Neighbor. Edumatic : Jurnal Pendidikan Informatika, 8(1), 1–10. https://doi.org/10.29408/edumatic.v8i1.24114

Pratama, R. F. P., & Maharani, W. (2025). Comparative Analysis of Naive Bayes and SVM for Improved Emotion Classification on Social Media. Edumatic: Jurnal Pendidikan Informatika, 9(1), 11-20.

Rahayu, S., Mz, Y., Bororing, J. E., & Hadiyat, R (2022). Implementasi Metode K-Nearest Neighbor (K-NN) untuk Analisis Sentimen Kepuasan Pengguna Aplikasi Teknologi Finansial FLIP. Edumatic : Jurnal Pendidikan Informatika, 6(1), 98–106. https://doi.org/10.29408/edumatic.v6i1.5433

Rizqiyah, A. M., & Nuryana, I. K. D. (2024). Analisis Sentimen Masyarakat terhadap Kebijakan Iuran Tabungan Perumahan Rakyat ( Tapera ) pada Platform X Menggunakan Algoritma Naïve Bayes Classifier dan Support Vector Machine. JEISBI: (Journal of Emerging Information Systems and Business Intelligence), 05(03), 298–306. https://doi.org/10.26740/jeisbi.v5i3.64074

Sanjaya, T. P. R., Fauzi, A., & Masruriyah, A. F. N. (2023). Analisis sentimen ulasan pada e-commerce shopee menggunakan algoritma naive bayes dan support vector machine. INFOTECH:Jurnal Informatika & Teknologi, 4(1), 16–26. https://doi.org/10.37373/infotech.v4i1.422

Sari, P. K., & Suryono, R. R. (2024). Komparasi Algoritma Support Vector Machine Dan Random Forest Untuk Analisis Sentimen Metaverse. Jurnal MNEMONIC, 7(1), 31–39. https://doi.org/10.36040/mnemonic.v7i1.8977

Sari, D., & Kurniawan, R. (2024). Analisis Sentimen Terhadap Kinerja Program Walikota Medan pada Media Sosial X Menggunakan Support Vector Machine MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(4), 1539-1548. https://doi.org/10.57152/malcom.v4i4.1685

Setiawan, A., & Suryono, R. R. (2024). Analisis Sentimen Ibu Kota Nusantara menggunakan Algoritma Support Vector Machine dan Naïve Bayes. Edumatic: Jurnal Pendidikan Informatika, 8(1), 183–192. https://doi.org/10.29408/edumatic.v8i1.25667

Syah, H., & Witanti, A. (2022). Analisis Sentimen Masyarakat Terhadap Vaksinasi Covid-19 Pada Media Sosial Twitter Menggunakan Algoritma Support Vector Machine ( SVM ). Jurnal Sistem Informasi Dan Informatika (Simika), 5(1). 59-67. https://doi.org/10.47080/simika.v5i1.1411

Downloads

Published

2025-08-10

How to Cite

Sarumpaet, L. H., & Suryono, R. R. (2025). Analisis Sentimen Publik Program PPPK di Media Sosial X menggunakan Naïve Bayes dan SVM . Edumatic: Jurnal Pendidikan Informatika, 9(2), 362–371. https://doi.org/10.29408/edumatic.v9i2.30065