Analisis Sentimen Ulasan Game dengan KNN: Perbandingan Rating dan Kamus Sentimen

Authors

DOI:

https://doi.org/10.29408/edumatic.v9i2.30133

Keywords:

sentiment analysis, game review, indonesian language, knn, sentiwords_id

Abstract

The growth of the global gaming industry makes sentiment analysis of user reviews a crucial tool for understanding satisfaction and identifying technical issues. This study aims to evaluate three labelling methods (rating-based, Sentiwords_id, and InSet) for classifying the sentiment of Indonesian-language reviews for the game Zenless Zone Zero (ZZZ) using the K-Nearest Neighbor (KNN) algorithm. The study analyzes 4,282 reviews from the Google Play Store, which underwent a Data Preprocessing stage, including Null Handling, Cleaning, Case Folding, Tokenization, Stopword Removal, and Stemming. The KNN's performance for each labelling method was evaluated using accuracy, precision, recall, and F1-score metrics on 80:20 train-test split. The labelling results reveal different sentiment perceptions: the rating-based method tends toward positive, InSet toward negative, while Sentiwords_id is dominated by the positive and neutral classes. The KNN performance evaluation shows that rating-based labelling achieved the highest accuracy (72%), excelling on the positive class (86% recall) but performing poorly on the neutral class (9% recall). Conversely, the lexicon-based labelling methods (both 69% accuracy) have specific strengths: InSet in negative detection (81% recall) and Sentiwords_id in recognizing the neutral class (83% recall). Main challenges of this study include the lexicon's limitations in handling slang and game-specific terms, as well as the inconsistency between ratings and text. This study is expected to provide empirical evidence on performance trade-offs among automatic labelling methods to aid in identifying player satisfaction and advancing the quality of game development.

References

Abdillah, W. F., Premana, A., & Bhakti, R. M. H. (2021). Analisis Sentimen Penanganan Covid-19 dengan Support Vector Machine: Evaluasi Leksikon dan Metode Ekstraksi Fitur. Jurnal Ilmiah Intech : Information Technology Journal of UMUS, 3(02), 160–170. https://doi.org/10.46772/intech.v3i02.556

Abodayeh, A., Hejazi, R., Najjar, W., Shihadeh, L., & Latif, R. (2023). Web Scraping for Data Analytics: A BeautifulSoup Implementation. Proceedings - 2023 6th International Conference of Women in Data Science at Prince Sultan University, WiDS-PSU 2023, 65–69. Riyadh, Saudi Arabia: IEEE. https://doi.org/10.1109/WiDS-PSU57071.2023.00025

Artana, I. K. A. B., Aditra, P. G., & Darmawiguna, I. G. M. (2023). Analisis Sentimen Twitter Untuk Menilai Kesiapan Pembelajaran Tatap Muka Terbatas Dengan Inset Lexicon Dan Levenshtein Distance. Jurnal Pendidikan Teknologi dan Kejuruan, 20(2), 200–209. https://doi.org/10.23887/jptkundiksha.v20i2.64579

Cahyani, D. E., & Patasik, I. (2021). Performance comparison of tf-idf and word2vec models for emotion text classification. Bulletin of Electrical Engineering and Informatics, 10(5), 2780–2788. https://doi.org/10.11591/eei.v10i5.3157

Cahyaningtyas, C., Nataliani, Y., & Widiasari, I. R. (2021). Analisis Sentimen Pada Rating Aplikasi Shopee Menggunakan Metode Decision Tree Berbasis SMOTE. AITI: Jurnal Teknologi Informasi, 18(2), 173–184. https://doi.org/10.24246/aiti.v18i2.173-184

Firmansyah, Y., Kurniawan, R., & Wijaya, Y. A. (2024). Analisis Data Sentimen Pemain Game Role-Playing Game (RPG) Honkai Star Rail dengan Algoritma Naive Bayes. Jurnal Informatika dan Rekayasa Perangkat Lunak, 6(1), 127–135.

Halder, R. K., Uddin, M. N., Uddin, M. A., Aryal, S., & Khraisat, A. (2024). Enhancing K-nearest neighbor algorithm: a comprehensive review and performance analysis of modifications. Journal of Big Data, 11(1), 1-55. https://doi.org/10.1186/s40537-024-00973-y

Khamket, T., & Polpinij, J. (2023). Automatically Correcting Noisy Labels for Improving Quality of Training Set in Domain-specific Sentiment Classification. Current Applied Science and Technology, 23(2), 1–17. https://doi.org/10.55003/cast.2022.02.23.006

Khder, M. A. (2021). Web scraping or web crawling: State of art, techniques, approaches and application. International Journal of Advances in Soft Computing and its Applications, 13(3), 144–168. https://doi.org/10.15849/ijasca.211128.11

Kusumastuti, R., Utami, E., & Yaqin, A. (2022). Detection of Sarcasm Sentences in Indonesian Tweets using SentiStrength. Proceeding - 6th International Conference on Information Technology, Information Systems and Electrical Engineering: Applying Data Sciences and Artificial Intelligence Technologies for Environmental Sustainability, 93–98. Yogyakarta, Indonesia: IEEE. https://doi.org/10.1109/ICITISEE57756.2022.10057904

Magria, V., Asridayani, A., & Sari, R. W. (2021). Word Formation Process of Slang Word Used by Gamers In The Game Online “Mobile Legend.” Jurnal Ilmiah Langue and Parole, 5(1), 38–53. https://doi.org/10.36057/jilp.v5i1.497

Mahendra, M. H., Murdiansyah, D. T., & Lhaksmana, K. M. (2023). Analisis Sentimen Tweet COVID-19 menggunakan K-Nearest Neighbors dengan TF-IDF dan Ekstraksi Fitur CountVectorizer. DIKE : Jurnal Ilmu Multidisiplin, 1(2), 37–43. https://doi.org/10.69688/dike.v1i2.35

Mustaqim, K., Amaresti, F. A., & Dewi, I. N. (2024). Analisis Sentimen Ulasan Aplikasi PosPay untuk Meningkatkan Kepuasan Pengguna dengan Metode K-Nearest Neighbor (KNN). Edumatic: Jurnal Pendidikan Informatika, 8(1), 11–20. https://doi.org/10.29408/edumatic.v8i1.24779

Mustofa, Y. A., & Idris, I. S. K. (2024). Pendekatan Ensemble pada Analisis Sentimen Ulasan Aplikasi Google Play Store. Jambura Journal of Electrical and Electronics Engineering, 6, 181–188. https://doi.org/10.37905/jjeee.v6i2.25184

Nur, A., Zulkifli, A., & Shafie, N. A. (2024). Review of the Lazada application on Google Play Store: Sentiment Analysis. Journal of Computing Research and Innovation, 9(1), 43–55. https://doi.org/10.24191/jcrinn.v9i1.412

Pamungkas, A. S., & Cahyono, N. (2024). Analisis Sentimen Review ChatGPT di Play Store menggunakan Support Vector Machine dan K-Nearest Neighbor. Edumatic: Jurnal Pendidikan Informatika, 8(1), 1–10. https://doi.org/10.29408/edumatic.v8i1.24114

Rahayu, S., MZ, Y., Bororing, J. E., & Hadiyat, R. (2022). Implementasi Metode K-Nearest Neighbor (K-NN) untuk Analisis Sentimen Kepuasan Pengguna Aplikasi Teknologi Finansial FLIP. Edumatic: Jurnal Pendidikan Informatika, 6(1), 98–106. https://doi.org/10.29408/edumatic.v6i1.5433

Sadiq, S., Umer, M., Ullah, S., Mirjalili, S., Rupapara, V., & Nappi, M. (2021). Discrepancy detection between actual user reviews and numeric ratings of Google App store using deep learning. Expert Systems with Applications, 181. https://doi.org/10.1016/j.eswa.2021.115111

Saninah, A., Prihartono, W., Rohmat, C. L., & Cirebon, K. (2025). Analisis Sentimen Pengguna Terhadap Aplikasi Duolingo Dengan Naïve Bayes Classifier. Jurnal Informatika dan Teknik Elektro Terapan, 13(1), 619–628. https://doi.org/10.23960/jitet.v13i1.5691

Ulya, S., Ridwan, A., Cholid Wahyudin, W., & Hana, F. M. (2022). Text Mining Sentimen Analisis Pengguna Aplikasi Marketplace Tokopedia Berdasar Rating dan Komentar Pada Google Play Store. Jurnal Bisnis Digital dan Sistem Informasi, 3(2), 33–40.

Zhang, J. (2024). Catching the unlikely gambler : how and why gacha games appeal to conscientious consumers [Master’s thesis, Lingnan University]. Lingnan University Digital Commons. https://commons.ln.edu.hk/otd/234/

Downloads

Published

2025-08-11

How to Cite

Sunyaruri, W. S., & Ningrum, N. K. (2025). Analisis Sentimen Ulasan Game dengan KNN: Perbandingan Rating dan Kamus Sentimen. Edumatic: Jurnal Pendidikan Informatika, 9(2), 412–421. https://doi.org/10.29408/edumatic.v9i2.30133