Analisis Sentimen Pinjaman Online: Studi Komparatif Algoritma Naïve Bayes, Decision Tree, dan KNN

Authors

DOI:

https://doi.org/10.29408/edumatic.v9i2.30142

Keywords:

sentiment analysis, decision tree, k-nearest neighbor, naïve bayes, online loans

Abstract

The development of online lending services in Indonesia has led to various responses from the public on social media, including complaints about billing methods and concerns about high interest rates. This study aims to compare the performance of Naive Bayes, Decision Tree, and K-Nearest Neighbors (KNN) algorithms. This type of research is quantitative, and the data used is 5,941 tweets through crawling techniques from X social media, followed by preprocessing, data labeling with a lexicon-based feature extraction using TF-IDF, and sentiment classification using the three algorithms. The evaluation stage uses a confusion matrix, which can calculate accuracy, precision, recall, and the F-1 score. The results show that the decision tree provides the most consistent performance with 69% accuracy due to its ability to recognize complex data patterns and understand relationships between features. Naive Bayes excels in negative sentiment classification with 68% accuracy, while KNN shows the lowest performance with 44% accuracy because it is not effective in handling high-dimensional text data. These results can be utilized by online loan service providers and regulators to build an accurate public opinion monitoring system in order to respond to issues of public concern and improve service quality on an ongoing basis.

References

A’yuniyah, Q. A., & Reza, M. (2023). Penerapan Algoritma K-Nearest Neighbor Untuk Klasifikasi Jurusan Siswa Di Sma Negeri 15 Pekanbaru. Indonesian Journal of InformaticResearch and Software Engineering (IJIRSE), 3(1), 39–45. https://doi.org/10.57152/ijirse.v3i1.484

Agresia, V., Suryono, R. R., Indonesia, U. T., Ratu, L., & Lampung, K. B. (2025). Comparison Of Svm , Naïve Bayes , And Logistic Regression Algorithms For Sentiment Analysis Of Fraud And Bots In Purchasing Concert Ticket. INOVTEK Polbeng - Seri Informatika,10(2), 592-602.

Agustia, D. N., Suryono, R. R., Indonesia, U. T., Ratu, L., & Lampung, K. B. (2025). Comparison Of Naïve Bayes , Random Forest , And Logistic Regression Algorithms For Sentiment Analysis Online Gambling. INOVTEK Polbeng – Seri Informatika. 10(1), 284 295. https://Doi.Org/10.35314/Prk93630

Al Rasyid, R., & Ningsih, D. H. U. (2024). Penerapan Algoritma TF-IDF dan Cosine Similarity untuk Query Pencarian Pada Dataset Destinasi Wisata. Jurnal JTIK (Jurnal Teknologi Informasi Dan Komunikasi), 8(1), 170–178. https://doi.org/10.35870/jtik.v8i1.1416

Arvante, J. Z. Y. (2022). Dampak Permasalahan Pinjaman Online dan Perlindungan Hukum Bagi Konsumen Pinjaman Online. Ikatan Penulis Mahasiswa Hukum Indonesia Law Journal, 2(1), 73–87. https://doi.org/10.15294/ipmhi.v2i1.53736

Azmi, A. F. (2024). Prediksi Churn Nasabah Bank Menggunakan Klasifikasi Random Forest Dan Decision Tree Dengan Evaluasi Confusion Matrix. Komputa : Jurnal Ilmiah Komputer Dan Informatika, 13(1), 111 119.https://doi.org/10.34010/komputa.v13i1.1263

Ismail, A. R., & Raden Bagus Fajriya Hakim. (2023). Implementasi Lexicon Based Untuk Analisis Sentimen Dalam Menentukan Rekomendasi Pantai Di DI Yogyakarta Berdasarkan Data Twitter. Emerging Statistics and Data Science Journal, 1(1), 37–46. https://doi.org/10.20885/esds.vol1.iss.1.art5

Pamungkas, A. S., & Cahyono, N. (2024). Analisis Sentimen Review ChatGPT di Play Store menggunakan Support Vector Machine dan K-Nearest Neighbor. Edumatic : Jurnal Pendidikan Informatika, 8(1), 1–10. https://doi.org/10.29408/edumatic.v8i1.24114

Prayudi. S, & Nasution, W. (2020). Ragam Bahasa Dalam Media Sosial Twitter: Kajian Sosiolinguistik. Jurnal Metamorfosa. https://doi.org/10.46244/metamorfosa.v8i2.1140

Rahmianti, I . (2022). Analisis Kelayakan Pemberian Kredit Koperasi Dengan Metode Data Mining Decision Tree. Jurnal Informatika dan Rekayasa Elektronik. 5(2). 153-161. https://doi.org/10.36595/jire.v5i2.663

Ramli. M , Apriyanto. M, Azhar. A, Puspitasari. F, & KMS. Fikri. N. S. (2023). Dampak Konsumen Terhadap Pinjaman Online (PINJOL). PaKMas: Jurnal Pengabdian Kepada Masyarakat, 3(1),52-58.https://doi.org/10.54259/pakmas.v3i1.1638

Riyanah, N., & Fatmawati, F. (2021). Penerapan Algoritma Naive Bayes Untuk Klasifikasi Penerima Bantuan Surat Keterangan Tidak Mampu. JTIM : Jurnal Teknologi Informasi Dan Multimedia, 2(4), 206–213.

Safira, A. & Hasan, N, Firman. (2023). Analisis Sentimen Masyarakat Terhadap Paylater Menggunakan Metode Naive Bayes Classifier. Zonasi: Jurnal Sistem Informasi. 5(1). 59-70.

Setiawan, A., & Suryono, R. R. (2024). Analisis Sentimen Ibu Kota Nusantara menggunakan Algoritma Support Vector Machine dan Naïve Bayes. Edumatic: Jurnal Pendidikan Informatika, 8(1), 183– 192. https://doi.org/10.29408/edumatic.v8i1.25667

Siki, Y.C.H., Tokan, T.B.A., Manehat, D.J., Ngaga, E. and Mau, S.D.B. 2025. Perbandingan Metode Naïve Bayes dan K-Nearest Neighbor Terhadap Sentimen Analisis Pinjaman Online. Jurnal Media Informatika. 6(3), 1614 1622.https://doi.org/10.55338/jumin.v6i3.5687

Silalahi, N., & Guidio Leonarde Ginting. (2023). Rekomendasi Berita Berkaitan dengan Menerapkan Algoritma Text Mining dan TF-IDF. Bulletin of Computer Science Research, 3(4), 276–282. https://doi.org/10.47065/bulletincsr.v3i4.266

Sinambela, D. P., Naparin, H., Zulfadhilah, M., & Hidayah, N. (2023). Implementasi Algoritma Decision Tree dan Random Forest dalam Prediksi Perdarahan Pascasalin. Jurnal Informasi Dan Teknologi, 5(3), 58–64. https://doi.org/10.60083/jidt.v5i3.393

Sugangga, R., & Sentoso, E. H. (2020). Perlindungan Hukum Terhadap Pengguna Pinjaman Online (Pinjol) Ilegal. Justice Journal Of Law), 01, 47 61.https://doi.org/10.33751/pajoul.v1i1.2050

Supriyadi, A. (2023). Perbandingan Algoritma Naive Bayes dan Decision Tree(C4.5) dalam Klasifikasi Dosen Berprestasi. Generation Journal, 7(1), 39 49. https://doi.org/10.29407/gj.v7i1.19797

Wati, D., & Syahfitri, T. (2022). Dampak Pinjaman Online Bagi Masyarakat. Community Development Journal : Jurnal Pengabdian Masyarakat, 2(3), 1181- 1184 https://doi.org/10.31004/cdj.v2i3.2950

Wijayanti, S. (2022). Dampak Aplikasi Pinjaman Online Terhadap Kebutuhan Dan Gaya Hidup Konsumtif Buruh Pabrik. MIZANIA: Jurnal Ekonomi Dan Akuntansi, 2(2), 230-235. https://doi.org/10.47776/mizania.v2i2.592

Downloads

Published

2025-08-10

How to Cite

Miranda, K., & Suryono, R. R. (2025). Analisis Sentimen Pinjaman Online: Studi Komparatif Algoritma Naïve Bayes, Decision Tree, dan KNN. Edumatic: Jurnal Pendidikan Informatika, 9(2), 372–381. https://doi.org/10.29408/edumatic.v9i2.30142