Kinerja Naive Bayes dan SVM pada Data Survei Tidak Seimbang: Studi Klasifikasi Kepuasan Masyarakat

Authors

DOI:

https://doi.org/10.29408/edumatic.v9i2.30185

Keywords:

classification, naive bayes, oversampling, support vector machine, public satisfaction survey

Abstract

The utilization of Public Satisfaction Survey (SKM) data has not been optimal, highlighting the need for an effective classification method to determine the level of public satisfaction. This study aims to classify satisfaction levels using the 2024 SKM data from the Regional Civil Service and Training Agency (BKPPD) of Grobogan Regency, employing Naive Bayes and Support Vector Machine (SVM) algorithms. This quantitative research uses nine service elements rated on a scale of 1 to 4 as features, with satisfaction level as the target variable. The dataset consists of 303 entries: 156 “very satisfied,” 115 “satisfied,” and 32 “dissatisfied.” Random oversampling was applied to address class imbalance. Model performance was evaluated using accuracy, precision, recall, and F1-score, both before and after oversampling. Results showed Naive Bayes achieved 96.72% accuracy, while SVM scored 95.08%. After oversampling, SVM accuracy significantly improved to 98.36%, while Naive Bayes slightly decreased to 95.08%. Precision, recall, and F1-scores also demonstrated strong performance across all classes. This study is expected to support the improvement of public service delivery at BKPPD Grobogan and similar institutions.

References

Abdurohman, M., Husna, R., Ali, I., Dwilestari, G., & Rahaningsih, N. (2021). Penerapan Model Klasifikasi dalam Tingkat Kepuasan Layanan Publik Kelurahan Karyamulya Menggunakan Algoritma Desicion Tree. Information Management For Educators and Professionals: Journal of Information Management, 6(1), 81–90. https://doi.org/10.51211/imbi.v6i1.1678

Alam, S., & Sulistyo, M. I. (2023). Analisis Sentimen Berdasarkan Ulasan Pengguna Aplikasi Mypertamina Pada Google Playstore Menggunakan Metode Naïve Bayes. Storage: Jurnal Ilmiah Teknik Dan Ilmu Komputer, 2(3), 100-108. https://doi.org/10.55123/storage.v2i3.2333

Cahyani, E. G., Umiyati, S., & Raharja, W. T. (2023). Analisis Kualitas Pelayanan Dalam Perspektif Survei Kepuasan Masyarakat di Kelurahan Semolowaru Kota Surabaya: Jurnal Kebijakan Dan Manajemen Publik, 13(2), 50–59. https://doi.org/10.38156/gjkmp.v13i2.167

De Zarzà, I., De Curtò, J., & Calafate, C. T. (2023). Optimizing Neural Networks for Imbalanced Data. Electronics, 12, 2–26. https://doi.org/10.3390/electronics12122674

Fadli, A., Limbong, T., Priskila, R., & Pranatawijaya, V. H. (2024). Penggunaan Algoritma Naive Bayes untuk Memprediksi Kelulusan Mahasiswa. Jurnal Mahasiswa Teknik Informatika, 8(3), 3773–3779. https://doi.org/10.36040/jati.v8i3.9791

Fajriyah, N., Lapatta, N. T., Nugraha, D. W., & Laila, R. (2025). Implementasi SVM dan Smote pada Analisis Sentimen Media Sosial X terhadap Pelantikan Agus Harimurti Yudhoyono. JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), 10(2), 1359–1370. https://doi.org/10.29100/jipi.v10i2.6246

Hanifatun, F., & Zahrotun, L. (2025). Penerapan Data Mining Dalam Pemberian Kelayakan Kredit Nasabah Pada Badan Usaha Milik Desa Gedong Gincu Dengan Metode Naïve Bayes. Jurnal Informatika: Jurnal Pengembangan IT, 10(1), 226–236. https://doi.org/10.30591/jpit.v10i1.5939

Haryawan, C., & Ardhana, Y. M. K. (2023). Analisa Perbandingan Teknik Oversampling Smote pada Imbalanced Data. Jurnal Informatika & Rekayasa Elektronika), 6(1), 73–78. https://doi.org/10.36595/jire.v6i1.834

Khoiriyah, M. W., Santi, I. H., Romadhona, R. D., Informatika, J. T., Informasi, T., & Islam Balitar, U. (2024). Analisis Algoritma C4.5 dan Naive Bayes dalam Menentukan Tingkat Kepuasan Publik di Rupbasan kelas 2 Blitar. JIP (Jurnal Informatika Polinema), 11(1), 13–18. https://doi.org/https://doi.org/10.33795/jip.v11i1.5831

Mohammed, R., Rawashdeh, J., & Abdullah, M. (2020, April). Machine learning with oversampling and undersampling techniques: overview study and experimental results. International conference on information and communication systems (ICICS), 243-248. Jordan: IEEE. https://doi.org/10.1109/ICICS49469.2020.239556

Kurniawan, R., & Arie Wijaya, Y. (2024). Analisis Data Sentimen Ulasan Pengguna Aplikasi Shopee di Google Play Store dengan Klasifikasi Algoritma Naïve Bayes. Jurnal Informatika Dan Rekayasa Perangkat Lunak, 6(1), 164–170.

Macfud, A. Z., Kusuma, A. P., & Puspita, W. D. (2023). Analisis Algoritma Naive Bayes Classifier (NBC) pada Klasifikasi Tingkat Minat Barang di Toko Violet Cell. JATI (Jurnal Mahasiswa Teknik Informatika), 7(1), 87–94. https://doi.org/10.36040/jati.v7i1.5692

Mukharyahya, Z. A., Astuti, Y. P., & Cahyani, O. N. (2025). Edumatic: Jurnal Pendidikan Informatika Perbandingan Naive Bayes dan Support Vector Machine dalam Klasifikasi Tingkat Kemiskinan di Indonesia. Edumatic: Jurnal Pendidikan Informatika, 9(1), 119–128. https://doi.org/10.29408/edumatic.v9i1.29512

Prasetya, J. (2022). Penerapan Klasifikasi Naive Bayes dengan Algoritma Random Oversampling danRandom Undersampling pada Data tidak Seimbang Cervical Cancer Risk Factors. Leibniz : Jurnal Matematika, 2(2), 11–22. https://doi.org/10.59632/leibniz.v2i2.173

Priatna, W. (2024). Dampak Pengambilan Sampel Data untuk Optimalisasi Data Tidak Seimbang pada Klasifikasi Penipuan Transaksi E-Commerce. Indonesian Journal of Computer Science Attribution, 13(2), 3070–3079. https://doi.org/10.33022/ijcs.v13i2.3698

Pribadi, M. N. N., & Ernawati, I. (2024). Perbandingan Hasil Penerapan Algoritma Klasifikasi dan Natural Language Processing Terhadap Data Kepuasan Pengguna Layanan Transportasi Umum MRT Jakarta. Jurnal Informatik, 20(3), 102–111. https://doi.org/10.52958/iftk.v20i3.10502

Saputro, E., & Rosiyadi, D. (2022). Penerapan Metode Random Over-Under Sampling Pada Algoritma Klasifikasi Penentuan Penyakit Diabetes. Bianglala Informatika, 10(1), 42–47. https://doi.org/10.31294/bi.v10i1.11739

Sir, Y. A., & Soepranoto, A. H. H. (2022). Pendekatan Resampling Data Untuk Menangani Masalah Ketidakseimbangan Kelas. Jurnal Komputer Dan Informatika, 10(1), 31–38. https://doi.org/10.35508/jicon.v10i1.6554

Widyadhana, F. K., Setiawan, N. Y., & Rahayudi, B. (2023). Sentimen Analysis pada Opini Masyarakat terhadap Pelayanan Publik Polres Ponorogo menggunakan Metode Support Vector Machine. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 7(7), 3047–3056.

Widyanto, A., Kusrini, & Kusnawi. (2023). Pengaruh Keseimbangan Data terhadap Akurasi Model Support Vector Machine pada Data Set Donor Darah. Jurnal Teknologi Terpadu, 9(2), 79–88. https://doi.org/10.54914/jtt.v9i2.771

Yang, C., Fridgeirsson, E. A., Kors, J. A., Reps, J. M., & Rijnbeek, P. R. (2023). Impact of random oversampling and random undersampling on the performance of prediction models developed using observational health data. Journal of Big Data, 11(7), 2–18. https://doi.org/10.1186/s40537-023-00857-7

Downloads

Published

2025-08-10

How to Cite

Romadhoni, M. N., & Winarsih, N. A. S. (2025). Kinerja Naive Bayes dan SVM pada Data Survei Tidak Seimbang: Studi Klasifikasi Kepuasan Masyarakat. Edumatic: Jurnal Pendidikan Informatika, 9(2), 382–391. https://doi.org/10.29408/edumatic.v9i2.30185