K-Means Clustering untuk Segmentasi Pelanggan: Mengungkap Pola Pembelian Strategi Pemasaran pada Sektor Ritel
DOI:
https://doi.org/10.29408/edumatic.v9i2.30336Keywords:
cluster analysis, consumer segmentation, k-means clustering, transaction data, unsupervised learningAbstract
Digital transformation has posed new challenges for retail companies in understanding consumer behavior due to the increasing volume of data and continuously changing preferences. This study aims to uncover purchasing patterns among retail customers and to provide data-driven marketing strategies through customer segmentation using the K-Means Clustering algorithm. This research adopts a quantitative exploratory approach using 3,900 synthetic entries from the Kaggle platform, representing retail transactions. The analysis focuses on variables such as age, gender, product category, location, purchase amount, and transaction frequency. The analytical process includes data preprocessing, dimensionality reduction using PCA, and segmentation with the K-Means algorithm. The optimal number of clusters was determined using the Elbow Method and Silhouette Score, while the quality of the clustering was evaluated using internal metrics, namely the Calinski-Harabasz Score (491.47) and the Davies-Bouldin Score (2.02). These values indicate a well-structured and reliable clustering result. Our findings reveal five distinct customer segments with varying characteristics, ranging from teenagers with small and periodic purchases to high-value adult customers who transact infrequently. These insights serve as the foundation for developing marketing strategies such as loyalty programs, seasonal promotions, and exclusive approaches.
References
Ariati, I., Norsa, R. N., Akhsan, L., & Heikal, J. (2023). Segmentasi Pelanggan Menggunakan K-Means Clustering Studi Kasus Pelanggan Uht Milk Greenfield. Cerdika: Jurnal Ilmiah Indonesia, 3(7), 729–743. https://doi.org/10.59141/cerdika.v3i7.639
Awalina, E. F. L., & Rahayu, W. I. (2023). Optimalisasi strategi pemasaran dengan segmentasi pelanggan menggunakan penerapan K-means clustering pada transaksi online retail. Jurnal Teknologi Dan Informasi, 13(2), 122–137. https://doi.org/10.34010/jati.v13i2.10090
Azhar, Z., Wulandari, C., Hanum, Z., Putra, W. A., & Saragih, Y. P. (2024). Implementasi Pengelompokan Persediaan Sepeda Motor Menggunakan Metode Clustering K-Means. Explorer, 4(2), 69–76. https://doi.org/10.47065/explorer.v4i2.1255
Fajar, M., Rahaningsih, N., & Dana, R. D. (2024). Analisis Pola Penjualan Obat Di Apotek an-Naafi Menggunakan Metode K-Means Clustering. JATI (Jurnal Mahasiswa Teknik Informatika), 8(1), 486–492. https://doi.org/10.36040/jati.v8i1.8395
Harahap, M., Lubis, Y., & Situmorang, Z. (2022). Analisis Pemasaran Bisnis dengan Data Science: Segmentasi Kepribadian Pelanggan berdasarkan Algoritma K-Means Clustering. Data Sciences Indonesia (DSI), 1(2), 76–88. https://doi.org/10.47709/dsi.v1i2.1348
Harani, N. H., Prianto, C., & Nugraha, F. A. (2020). Segmentasi pelanggan produk digital service Indihome menggunakan algoritma K-Means berbasis Python. Jurnal Manajemen Informatika (JAMIKA), 10(2), 133–146. https://doi.org/10.34010/jamika.v10i2.2683
Hermawan, A., Jayanti, N. R., Saputra, A., Tambunan, C., Baihaqi, D. M., Syahreza, M. A., & Bachtiar, Z. (2024). Optimalisasi Strategi Pemasaran Melalui Analisis RFM pada Dataset Transaksi Ritel Menggunakan Python. Jurnal Manajemen Riset Inovasi, 2(4), 254–267. https://doi.org/10.55606/mri.v2i4.3246
Hidayat, R. S., Muttaqin, M. R., & Irmayanti, D. (2024). Pengelompokan Daerah Rawan Bencana Di Jawa Tengah Menggunakan Algoritma K-Means Clustering. JATI (Jurnal Mahasiswa Teknik Informatika), 8(5), 10035–10042. https://doi.org/10.36040/jati.v8i5.10880
Idham, I., Rosika, H., & Yuliadi, Y. (2024). Implementasi Rapidminer Untuk Clestering Data Penjualan Pakaian Menggunakan Metode K-Means. JUTECH: Journal Education and Technology, 5(1), 221–231. https://doi.org/10.31932/jutech.v5i1.3642
Lega, A., Adytia, P., & Lailiyah, S. (2024). Penerapan Algoritma K-means Clustering untuk Klasterisasi Penjualan Smartphone pada Carin Cell. STMIK Widya Cipta Dharma.
Perdana, S. A., Florentin, S. F., & Santoso, A. (2022). Analisis Segmentasi Pelanggan Menggunakan K-Means Clustering Studi Kasus Aplikasi Alfagift. Sebatik, 26(2), 446–457. https://doi.org/10.46984/sebatik.v26i2.1991
Prasetyawan, D., Mulyanto, A., & Gatra, R. (2025). Pemetaan Lintasan Karir Alumni Berdasarkan Analisis Cluster: Kombinasi K-Means dan Reduksi Dimensi Autoencoder. Edumatic: Jurnal Pendidikan Informatika, 9(1), 198–207. https://doi.org/10.29408/edumatic.v9i1.29713
Pratama, R. F. P., & Maharani, W. (2025). Comparative Analysis of Naive Bayes and SVM for Improved Emotion Classification on Social Media. Edumatic: Jurnal Pendidikan Informatika, 9(1), 11–20. https://doi.org/10.29408/edumatic.v9i1.29087
Pujiono, S., Astuti, R., & Basysyar, F. M. (2024). Implementasi Data Mining Untuk Menentukan Pola Penjualan Produk Menggunakan Algoritma K-Means Clustering. JATI (Jurnal Mahasiswa Teknik Informatika), 8(1), 615–620. https://doi.org/10.36040/jati.v8i1.8360
Rahman, F. D., Mulki, M. I. Z., & Taryana, A. (2024). Clustering dan klasifikasi data cuaca Cilacap dengan menggunakan metode K-Means dan Random Forest. Jurnal SINTA: Sistem Informasi Dan Teknologi Komputasi, 1(2), 90–97. https://doi.org/10.61124/sinta.v1i2.15
Robbani, M. A., Firmansyah, G., Widodo, A. M., & Tjahjono, B. (2024). Clustering of Child Stunting Data in Tangerang Regency Using Comparison of K-Means, Hierarchical Clustering and DBSCAN Methods. Asian Journal of Social and Humanities, 2(12), 3105–3115. https://doi.org/10.59888/ajosh.v2i12.422
Rusvinasari, D. (2025). Analisis Klasterisasi Pola Penjualan Menu Makanan pada Rumah Makan menggunakan Metode K-Means Clustering. Jurnal Informatika: Jurnal Pengembangan IT, 10(2), 398–409. https://doi.org/10.30591/jpit.v10i2.8511
Sarimole, F. M., & Hakim, L. (2024). Klasifikasi barang menggunakan metode clustering K-Means dalam penentuan prediksi stok barang. Jurnal Sains Dan Teknologi, 5(3), 846–854. https://doi.org/10.55338/saintek.v5i3.2709
Setiaji, P., Adi, K., & Surarso, B. (2024). Development of Classification Method for Determining Chicken Egg Quality Using GLCM-CNN Method. Ingenierie Des Systemes d’Information, 29(2), 397–407. https://doi.org/10.18280/isi.290201
Wilbert, H. J., Hoppe, A. F., Sartori, A., Stefenon, S. F., & Silva, L. A. (2023). Recency, Frequency, Monetary Value, Clustering, and Internal and External Indices for Customer Segmentation from Retail Data. Algorithms, 16(9), 396. https://doi.org/10.3390/a16090396
Yahya, A., & Kurniawan, R. (2025). Implementasi Algoritma K-Means untuk Pengelompokan Data Penjualan Berdasarkan Pola Penjualan: Implementation of K-Means Algorithm for Clustering Sales Data Based on Sales Patterns. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 5(1), 350–358. https://doi.org/10.57152/malcom.v5i1.1773
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Andrean Maulana Artiarno, Pratomo Setiaji, Fajar Nugraha

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Semua tulisan pada jurnal ini adalah tanggung jawab penuh penulis. Edumatic: Jurnal Pendidikan Informatika bisa diakses secara free (gratis) tanpa ada pungutan biaya, sesuai dengan lisensi creative commons yang digunakan.

This work is licensed under a Lisensi a Creative Commons Attribution-ShareAlike 4.0 International License.