Optimasi Kendali PID berbasis IoT pada Oven Listrik untuk Pengeringan Rempah yang Presisi

Authors

DOI:

https://doi.org/10.29408/edumatic.v9i2.30537

Keywords:

internet of things, pid control, smart oven, spice drying, temperature control

Abstract

Unstable spice drying can reduce active compound content by up to 30% and increase the risk of microbial contamination by up to 40%, while conventional temperature control does not ensure thermal stability. This study aims to develop an IoT-based drying system using a PID algorithm to maintain temperature stability and allow remote monitoring and control. The research followed the waterfall model, starting from needs analysis, hardware and software design, PID implementation using a trial-and-error approach, IoT application development with Kodular and Firebase, system integration, and full system performance testing. Key components include the DS18B20 temperature sensor, ESP32, heating element, and IoT platform. Software testing used the black box method, while hardware testing evaluated performance through overshoot, steady-state error, settling time, disturbance simulation, and comparison with the on-off control method. The resulting system automatically regulates temperature with a PID algorithm and enables real-time monitoring via mobile devices. Testing showed the PID system was more stable than the on-off method, with overshoot <4°C, steady-state error <1.5°C, settling time of ±750 seconds, and quick response to disturbances. The mobile application operated reliably without errors, enhancing the quality and precision of the spice drying process.

References

Ali, A., Chua, B. L., Chow, Y. H., & Tee, L. H. (2023). Quality and energy efficiency evaluation of Rosmarinus officinalis L. by intermittent and continuous microwave drying: Polyphenol composition, bioactive compounds quantification, antioxidant properties, physical characteristics, and energy consumption. Journal of Food Process Engineering, 46(12), e14453. https://doi.org/10.1111/jfpe.14453

Altunel, A. O., Caglar, S., & Altunel, T. (2021). Determining the habitat fragmentation thru geoscience capabilities in Turkey: A case study of wildlife refuges. International Journal of Engineering and Geosciences, 6(2), 104–116. https://doi.org/10.26833/ijeg.712549

Anil, S., Srinaath, H. H., & Jayakumar, M. (2023). Comparative Analysis of ON/OFF, PID and Model Predictive Control System in HVAC Systems. 2023 Innovations in Power and Advanced Computing Technologies (i-PACT), 1–5. https://doi.org/10.1109/i-PACT58649.2023.10434750

Annafi, M. I., Syakur, A., & M., A. A. Z. (2023). Perancangan Kontrol Suhu Berbasis PID dengan Metode Ziegler Nichols 1 pada Oven Listrik. Transient, 12(1), 31–38. https://doi.org/10.14710/transient.v12i1.31-38

Awaludin, M. I., & Waluyo, B. D. (2023). Perancangan Sistem Kontrol Suhu Oven Listrik Menggunakan Metode PID Design of Electric Oven Temperature Control System Using PID Method. Telekontran, 11(2), 129–139. https://doi.org/10.34010/telekontran.v11i2.11366

Chaisawasd, A., Ardhan, K., Obma, J., & Sa-Ngiamvibool, W. (2024). Designing Pid Controller Using Ssa for Interconnected Thermal Power Systems. EUREKA, Physics and Engineering, 2024(3), 73–80. https://doi.org/10.21303/2461-4262.2024.003321

Febrinda, A. E., Laila, F., Mariyani, N., Resmeiliana, I., & Dahliani, L. (2023). Phytochemical profiles and the effect of three drying methods on antioxidant and antibacterial activity of Eleutherine bulbosa (Mill.) Urb. South African Journal of Botany, 157, 258–265. https://doi.org/10.1016/j.sajb.2023.03.063

Güney, A., Temizkan, M., Tekin, S., Samuk, D. C., & Ç, O. (2020). Temperature Control of an Electric Furnace with Intuitive Control Methods. Turkish Journal of Electromechanics & Energy, 5(1), 3–8.

Ivanov, V., Smolentsev, S., & Filyakov, A. (2022). Microprocessor temperature control device for a thermal object. E3S Web of Conferences, 363, 1–6. https://doi.org/10.1051/e3sconf/202236301027

Kaur, H., Singh, S., Kanagala, S. G., Gupta, V., Patel, M. A., & Jain, R. (2024). Herbal Medicine-A Friend or a Foe of Cardiovascular Disease. Cardiovascular & Hematological Agents in Medicinal Chemistry, 22(2), 101–105. https://doi.org/10.2174/0118715257251638230921045029

Kumari, H. (2021). Pid Based Room Temperature Control. International Journal of Advanced Research in Computer Science, 12(3), 7–11. https://doi.org/10.26483/ijarcs.v12i3.6739

Massarioli, A. P., de Alencar, S. M., Siqueira, A. F., de Melo, M. P., Vidigal, I. G., & Ferreira, A. L. G. (2023). Evaluation of the Quality and Antioxidant Activity of Dehydrated Medicinal Herbs. Horticulturae, 9(5), 1–12. https://doi.org/10.3390/horticulturae9050597

Nurhaslina, C. R., Andi Bacho, S., & Mustapa, A. N. (2022). Review on drying methods for herbal plants. Materials Today: Proceedings, 63(January), S122–S139. https://doi.org/10.1016/j.matpr.2022.02.052

Said, E. B., Hicham, E. F., Naïma, Z., Naji, A., Hafida, B., & Fatiha, B. (2022). Effect of drying techniques on the Moroccan Pelargonium graveolens L’Hér. leaves essential oil: yield, composition, total polyphenol content, antioxidant activity, and hygroscopic parameters. Journal of Essential Oil Bearing Plants, 25(3), 508–523. https://doi.org/10.1080/0972060X.2022.2086826

Silpa, S. G., Smitha, G. R., & Ranjitha, K. (2021). Drying and packaging methods impact the bacoside profile and microbiological quality of Brahmi herb (Bacopa monnieri L.) during storage. Industrial Crops and Products, 159(November 2020), 113064. https://doi.org/10.1016/j.indcrop.2020.113064

Somefun, O. A., Akingbade, K., & Dahunsi, F. (2021). The dilemma of PID tuning. Annual Reviews in Control, 52, 65-74. https://doi.org/10.1016/j.arcontrol.2021.05.002

Tamrakar, A. K., Shukla, A., Kalifullah, A. H., Reegu, F. A., & Shukla, K. (2022). extended review on internet of things (IoT) and its characterisation. International Journal of Health Sciences, 6(April), 8490–8500. https://doi.org/10.53730/ijhs.v6ns2.7177

Utama, D. M., Abdullah, F. F., Amallynda, I., & Baroto, T. (2024). Integrated production-inventory model for multi-item raw materials with exponential quality degradation: a real case study. OPSEARCH, 61(4), 1862–1887. https://doi.org/10.1007/s12597-024-00759-z

Yang, T., Zheng, X., Xiao, H., Shan, C., Yao, X., Li, Y., & Zhang, J. (2023). Drying Temperature Precision Control System Based on Improved Neural Network PID Controller and Variable-Temperature Drying Experiment of Cantaloupe Slices. Plants, 12(12), 1–20. https://doi.org/10.3390/plants12122257

Zuki, R. F. M., Ismail, M. F., & Aziz, J. A. (2024). Physical and Chemical Changes of Seven Selected Herbs Used as Herbal Bath Affected by Different Drying Methods. Pertanika Journal of Tropical Agricultural Science, 47(3), 621–643. https://doi.org/10.47836/pjtas.47.3.03

Downloads

Published

2025-08-13

How to Cite

Pratama, B., Salamah, I., & Lindawati, L. (2025). Optimasi Kendali PID berbasis IoT pada Oven Listrik untuk Pengeringan Rempah yang Presisi. Edumatic: Jurnal Pendidikan Informatika, 9(2), 502–511. https://doi.org/10.29408/edumatic.v9i2.30537