Performance Evaluation of Naïve Bayes and SVM in Sentiment Analysis of Illegal Parking Attendants
DOI:
https://doi.org/10.29408/edumatic.v9i2.30714Keywords:
illegal parking attendants, naïve bayes, social media x, svm, text classificationAbstract
The increase in the number of vehicles in Indonesia has led to high demand for parking spaces, which has triggered the emergence of illegal parking attendants. This phenomenon has elicited various public responses, particularly on social media platform X. This study analyzes public sentiment toward the presence of illegal parking attendants by comparing the performance of the Naïve Bayes and Support Vector Machine (SVM) algorithms. The data used consists of 1,484 Indonesian-language tweets collected via crawling techniques. The pre-processing stage included data cleaning, case folding, word normalization, tokenization, stopword removal, and stemming. The data was then labeled with positive or negative sentiment using the InSet (Indonesia Sentiment Lexicon) approach and manually validated, before being divided into training and testing datasets. Feature extraction was performed using the TF-IDF method before being applied to the classification model. The evaluation results show that the SVM algorithm with a linear kernel approach produces the highest accuracy of 82%, outperforming Naïve Bayes: Gaussian 56%, Multinomial 74%, and Bernoulli 77%. These results are expected to contribute to the formulation of more organized and transparent parking policies, as well as demonstrate the importance of sentiment analysis as a tool to support data-driven decision making.
References
Asro’i, A., & Februariyanti, H. (2022). Analisis Sentimen Pengguna Twitter terhadap Perpanjangan PPKM Menggunakan Metode K-Nearest Neighbor. Jurnal Khatulistiwa Informatika, 10(1), 17–24. https://doi.org/10.31294/jki.v10i1.12624
Furqan, M., & Nasir, A. F. A. (2024). Big data approach to sentiment analysis in machine learning-based microblogs: Perspectives of religious moderation public policy in indonesia. Journal of Applied Engineering and Technological Science, 5(2), 955-965. https://doi.org/10.37385/jaets.v5i2.4498
Husen, R. A., Astuti, R., Marlia, L., Rahmaddeni, R., & Efrizoni, L. (2023). Analisis Sentimen Opini Publik pada Twitter Terhadap Bank BSI Menggunakan Algoritma Machine Learning. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 3(2), 211–218. https://doi.org/10.57152/malcom.v3i2.901
Intan, S. F., Permana, I., Salisah, F. N., Afdal, M., & Muttakin, F. (2023). Perbandingan Algoritma KNN, NBC, dan SVM: Analisis Sentimen Masyarakat Terhadap Perparkiran di Kota Pekanbaru. JUSIFO (Jurnal Sistem Informasi), 9(2), 85–96. https://doi.org/10.19109/jusifo.v9i2.21357
Iskandar, J. W., & Nataliani, Y. (2021). Perbandingan Naïve Bayes, SVM, dan k-NN untuk Analisis Sentimen Gadget Berbasis Aspek. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(6), 1120–1126. https://doi.org/10.29207/resti.v5i6.3588
Kholilullah, M., Martanto, M., & Hayati, U. (2024). Analisis Sentimen Pengguna Twitter(X) Tentang Piala Dunia Usia 17 Menggunakan Metode Naive Bayes. JATI (Jurnal Mahasiswa Teknik Informatika), 8(1), 392–398. https://doi.org/10.36040/jati.v8i1.8378
Mukti, A. T., & Hasan, F. N. (2024). Analisis Sentimen Warganet Terhadap Keberadaan Juru Parkir Liar Menggunakan Metode Naive Bayes Classifier. Jurnal Media Informatika Budidarma, 8(1), 644–653. https://doi.org/10.30865/mib.v8i1.6982
Nugraha, S. N., Pebrianto, R., Latif, A., & Firdaus, M. R. (2022). Analisis Sentimen Twitter Terhadap Menteri Indonesia dengan Algoritma Support Vector Machine dan Naive Bayes. Jurnal Teknik Elektro Dan Informatika, 17(1), 1–12. https://doi.org/10.30587/e-link.v17i1.3965
Oszaer, R. J., Nendissa, R. H., & Tita, H. M. Y. (2023). Penegakan Hukum Terhadap Juru Parkir Tidak Resmi Di Kota Ambon. CAPITAN: Constitutional Law & Administrative Law Review, 1(1), 46–63. https://doi.org/10.47268/capitan.v1i1.9907
Raffi, M., Suharso, A., & Maulana, I. (2023). Analisis Sentimen Ulasan Aplikasi Binar Pada Google Play Store Menggunakan Algoritma Naïve Bayes. INTECOMS: Journal of Information Technology and Computer Science, 6(1), 450–462. https://doi.org/10.31539/intecoms.v6i1.6117
Ramadhan, N. G., & Adhinata, F. D. (2022). Sentiment Analysis on Vaccine COVID-19 Using Word Count and Gaussian Naïve Bayes. Indonesian Journal of Electrical Engineering and Computer Science, 26(3), 1765–1772. https://doi.org/10.11591/ijeecs.v26.i3.pp1765-1772
Safira, A., & Hasan, F. N. (2023). Analisis Sentimen Masyarakat Terhadap Paylater Menggunakan Metode Naive Bayes Classifier. ZONAsi: Jurnal Sistem Informasi, 5(1), 59-70. https://doi.org/10.31849/zn.v5i1.12856
Samuel, F. D., Atika, P. D., & Setiawati, S. (2023). Analisis Sentimen Masyarakat Terhadap Perkuliahan Daring di Twitter Menggunakan Algoritma Naive Bayes dan Support Vector Machine. Journal of Students ‘Research in Computer Science, 4(2), 261–272. https://doi.org/10.31599/6691v571
Sanjaya, T. P. R., Fauzi, A., & Masruriyah, A. F. N. (2023). Analisis Sentimen Ulasan pada E-commerce Shopee Menggunakan Algoritma Naive Bayes dan Support Vector Machine. INFOTECH : Jurnal Informatika & Teknologi, 4(1), 16–26. https://doi.org/10.37373/infotech.v4i1.422
Sarimole, F. M., & Kudrat. (2024). Analisis Sentimen Terhadap Aplikasi Satu Sehat Pada Twitter Menggunakan Algoritma Naive Bayes Dan Support Vector Machine. Jurnal Sains Dan Teknologi, 5(3), 783–790. https://doi.org/10.55338/saintek.v5i1.2702
Sedenel, A. F., Cheisviyanny, C., & Sari, V. F. (2022). Potensi Pendapatan Retribusi Parkir Dari Sudut Pandang Juru Parkir Liar di Kota Padang Tahun 2021. Jurnal Eksplorasi Akuntansi (JEA), 4(1), 74–92. https://doi.org/10.24036/jea.v4i1.493
Setiawan, A., & Suryono, R. R. (2024). Analisis Sentimen Ibu Kota Nusantara menggunakan Algoritma Support Vector Machine dan Naïve Bayes. Edumatic: Jurnal Pendidikan Informatika, 8(1), 183-192. https://doi.org/10.29408/edumatic.v8i1.25667
Sudrajat, A., Mulyani, N., & Marpaung, N. (2022). Sistem Pendukung Keputusan Penentuan Kelayakan Penangguhan Kredit Nasabah menggunakan Naïve Bayes. Edumatic: Jurnal Pendidikan Informatika, 6(2), 205-214. https://doi.org/10.29408/edumatic.v6i2.6298
Sutranggono, A. N., & Imah, E. M. (2023). Tweets Emotions Analysis of Community Activities Restriction as COVID-19 Policy in Indonesia Using Support Vector Machine. CommIT (Communication and Information Technology) Journal, 17(1), 13–25. https://doi.org/10.21512/commit.v17i1.8189
Verawati, I., & Jaelani, S. N. (2024). Analisis Sentimen Pengguna Twitter Terhadap Bus Listrik Menggunakan Naïve Bayes. Jurnal Media Informatika Budidarma, 8(2), 832–842. https://doi.org/10.30865/mib.v8i2.7030
Watratan, A. F., B, A. P., & Moeis, D. (2020). Implementasi Algoritma Naive Bayes Untuk Memprediksi Tingkat Penyebaran Covid-19 Di Indonesia. Journal of Applied Computer Science and Technology, 1(1), 7–14. https://doi.org/10.52158/jacost.v1i1.9
Wijaya, K. A. M., Dewi, A. A. S. L., & Suryani, L. P. (2022). Perijinan dan Tindak Pidana Terhadap Juru Parkir Liar di Kota Denpasar. Jurnal Analogi Hukum, 4(3), 260–265.
Yusran, M., Siswanto, S., & Islamiyati, A. (2024). Comparison of Multinomial Naive Bayes and Bernoulli Naive Bayes on Sentiment Analysis of Kurikulum Merdeka with Query Expansion Ranking. SISTEMASI: Jurnal Sistem Informasi, 13(1), 96–106. https://doi.org/10.32520/stmsi.v13i1.3187
Zharifa, A. H. A., & Ujianto, E. I. H. (2024). Analisis Sentimen Publik di Twitter Pasca Debat Kelima Pilpres 2024 dengan Naive Bayes. Edumatic: Jurnal Pendidikan Informatika, 8(2), 754-763. https://doi.org/10.29408/edumatic.v8i2.28048
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Sandra Saputra, Paradise Paradise, Novanda Alim Setya Nugraha

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Semua tulisan pada jurnal ini adalah tanggung jawab penuh penulis. Edumatic: Jurnal Pendidikan Informatika bisa diakses secara free (gratis) tanpa ada pungutan biaya, sesuai dengan lisensi creative commons yang digunakan.

This work is licensed under a Lisensi a Creative Commons Attribution-ShareAlike 4.0 International License.