Model Hybird Fuzzy Logic dan Deep Learning untuk Prediksi Harga Saham

Authors

DOI:

https://doi.org/10.29408/edumatic.v9i2.30890

Keywords:

deep learning, gru, fuzzy logic, lstm, stock price prediction

Abstract

Stock price prediction is a major challenge in the financial sector due to nonlinear factors and data uncertainty. This study aims to develop a predictive model by integrating fuzzy logic into deep learning algorithms to improve accuracy and robustness against noise. This is a quantitative experimental study using 1,000 daily historical stock price data of BBCA (Bank Central Asia), collected via web scraping from public sources. The data were analyzed using three types of neural networks: Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU), both before and after fuzzy integration. Fuzzification was applied to the price data to generate linguistic features, which were added as input to the neural network models. The models were evaluated using Train Cost, Test Cost, and the number of epochs, and a t-test was conducted to assess the statistical significance of performance differences. Our findings show that the LSTM model with fuzzy input achieved the best performance, with a Train Cost of 0.0002 and a Test Cost of 0.0052, and demonstrated superior capability in handling long-term dependencies. In contrast, RNN and GRU models showed decreased accuracy after fuzzy integration. The combining fuzzy and LSTM model shows promise for broader applications in time-series forecasting under uncertainty.

References

Abdulwahid, A. H. (2025). IoT-Based Hybrid Fuzzy LSTM-RNN for Secure Disease Prediction in Healthcare EHRs. Journal of Information Systems Engineering and Management, 10(36s), 339–356. https://doi.org/10.52783/jisem.v10i36s.6438

Atmawanti, I. I., Hakim, A. R., & Tarno, T. (2024). Perbandingan Fuzzy Time Series Markov Chain Dan Fuzzy Time Series Cheng. Jurnal Gaussian, 13(1), 121-132. https://doi.org/10.14710/j.gauss.13.1.121-132

Chen, C., Xue, L., & Xing, W. (2023). Research on Improved GRU-Based Stock Price Prediction Method. Applied Sciences (Switzerland), 13(15). https://doi.org/10.3390/app13158813

Haryono, A. T., Sarno, R., & Sungkono, K. R. (2024). Stock price forecasting in Indonesia stock exchange using deep learning: A comparative study. International Journal of Electrical and Computer Engineering, 14(1), 861–869. https://doi.org/10.11591/ijece.v14i1.pp861-869

Kallimath, S. P., Darapaneni, N., & Paduri, A. R. (2025). Deep Learning Approaches for Stock Price Prediction A Comparative Study on Nifty 50 Dataset. EAI Endorsed Transactions on Intelligent Systems and Machine Learning Applications, 1, 1–13. https://doi.org/10.4108/eetismla.7481

Kuncoro, D. F. (2024). Penerapan Logika Fuzzy dalam Penanganan Penyakit Diabetes: Sistematik Literatur Review. Jurnal Kolaborasi Riset Sarjana, 1(1), 1-14.

Lin, H. Y., & Hsu, B. W. (2024). Application of hybrid fuzzy interval-based machine learning models on financial time series—A case study of Taiwan biotech index during the epidemic period. Frontiers in Artificial Intelligence, 6, 1283741. https://doi.org/10.3389/frai.2023.1283741

Nasiri, H., & Ebadzadeh, M. M. (2023). Multi-step-ahead stock price prediction using recurrent fuzzy neural network and variational mode decomposition. Applied Soft Computing, 148, 110867. https://doi.org/10.1016/j.asoc.2023.110867

Nurhasanah, Y. I., Kurnia, E., & Sutarti, S. (2025). Integrasi Logika Fuzzy dengan Teknologi Cerdas: Tinjauan Sistematis atas Peluang, Tantangan, dan Arah Masa Depan. MIND (Multimedia Artificial Intelligent Networking Database) Journal, 10(1), 1-17.

Pascanu, R., Mikolov, T., & Bengio, Y. (2013, May). On the difficulty of training recurrent neural networks. International conference on machine learning, 1310-1318. PMLR.

Patsiarikas, M., Papageorgiou, G., & Tjortjis, C. (2025). Using Machine Learning on Macroeconomic, Technical, and Sentiment Indicators for Stock Market Forecasting. Information, 16(7), 1–41. https://doi.org/10.3390/info16070584

Pattanayak, R. M., Sangameswar, M. V., Vodnala, D., & Das, H. (2022). Fuzzy Time Series Forecasting Approach using LSTM Model. Computacion y Sistemas, 26(1), 485–492. https://doi.org/10.13053/CyS-26-1-4192

Perumal, T., Mustapha, N., Mohamed, R., & Shiri, F. M. (2024). A Comprehensive Overview and Comparative Analysis on Deep Learning Models. Journal on Artificial Intelligence, 6(1), 301–360. https://doi.org/10.32604/jai.2024.054314

Ramazani, A., Fuadi, W., & Meiyanti, R. (2025). Prediksi Jumlah Kebutuhan Pemakaian Air Menggunakan Metode Fuzzy Time Series Pada Perumda Aceh Utara. Jurnal Ilmiah ILKOMINFO-Ilmu Komputer & Informatika, 8(2), 200-209. https://doi.org/10.47324/ilkominfo.v8i2.360

Rusadi, A., Ula, M., Daud, M., Nurdin, N., & Hasibuan, A. (2025). Comparison of the Performance of Fuzzy Tsukamoto and Fuzzy Mamdani in an Internet of Things Based Grape Greenhouse Control System. Journal of Artificial Intelligence and Software Engineering, 5(2), 540-551.

Seok, S., Cho, H., & Ryu, D. (2024). Dual effects of investor sentiment and uncertainty in financial markets. The Quarterly Review of Economics and Finance, 95, 300-315. https://doi.org/10.1016/j.qref.2024.04.006

Shetty, D. K., & Ismail, B. (2023). Forecasting stock prices using hybrid non-stationary time series model with ERNN. Communications in Statistics: Simulation and Computation, 52(3), 1026–1040. https://doi.org/10.1080/03610918.2021.1872631

Susetyo, Y. A., Parhusip, H. A., Trihandaru, S., & Susanto, B. (2025). LSTM-IOT (LSTM-based IoT) untuk Mengatasi Kehilangan Data Akibat Kegagalan Koneksi. Jurnal Teknologi Informasi dan Ilmu Komputer, 12(1), 175-186. https://doi.org/10.25126/jtiik.2025129157

Trisely, T. L., Saputra, R. A., & Arsyad, R. J. (2023). Metode Fuzzy Tsukamoto Digunakan Untuk Memprediksi Jumlah Produksi Sabun Cuci Piring Surya Lemon. EJECTS: Journal Computer, Technology, and Informations System, 3(1), 31-37.

Wang, W., Shao, J., & Jumahong, H. (2023). Fuzzy inference-based LSTM for long-term time series prediction. Scientific Reports, 13(1), 20359. https://doi.org/10.1038/s41598-023-47812-3

Downloads

Published

2025-08-15

How to Cite

Muhidin, A., Rilvani, E., & Naya, C. (2025). Model Hybird Fuzzy Logic dan Deep Learning untuk Prediksi Harga Saham. Edumatic: Jurnal Pendidikan Informatika, 9(2), 552–531. https://doi.org/10.29408/edumatic.v9i2.30890