Aplikasi Deteksi Otomatis Hukum Tajwid Utama pada Ayat Al-Qur’an menggunakan YOLOv8

Authors

DOI:

https://doi.org/10.29408/edumatic.v9i2.30978

Keywords:

interactive web application, object detection, digital tajwid learning, qur’anic text, yolov8

Abstract

Tajwid learning faces challenges in visually recognizing recitation rules from Arabic script, thus requiring an interactive and accurate digital medium. This study aims to develop a web-based application to automatically detect seven core tajwid rules using YOLOv8. This research follows a Research and Development approach adopting the ADDIE model, which consists of five systematic stages: analysis, design, development, implementation, and evaluation. The YOLOv8 model was trained using 200 annotated images of Qur’anic verses, with a data split of 70% for training, 20% for validation, and 10% for testing. Data augmentation was applied through rotation, flipping, and brightness adjustment, with training facilitated using Roboflow. Our main finding is an interactive web application capable of automatically detecting seven tajwid rules from Qur’anic verse images. The application allows users to upload images, which are then analyzed and displayed with colored bounding boxes and interactive captions. Testing results showed accurate and responsive detection performance, achieving a mAP@50 of 89.88% with high accuracy across several tajwid classes. These findings highlight the potential of Artificial Intelligence (AI) to support more interactive, independent, and adaptive tajwid learning, while also promoting the digitization of Islamic manuscripts.

References

Adeoye, N. M. A., Wirawan, N. K. a. S. I., Pradnyani, N. M. S. S., & Septiarini, N. N. I. (2024). Revolutionizing Education: Unleashing the power of the ADDIE model for Effective teaching and learning. JPI (Jurnal Pendidikan Indonesia), 13(1), 202–209. https://doi.org/10.23887/jpiundiksha.v13i1.68624

Aini, Q., Lutfiani, N., Kusumah, H., & Zahran, M. S. (2021). Deteksi dan pengenalan objek dengan model machine learning: Model YOLO. CESS (Journal of Computer Engineering System and Science), 6(2), 192–198. https://doi.org/10.24114/cess.v6i2.25840

Assuyuthi, M. J., & Ekawati, N. E. (2024). Media pembelajaran interaktif pengenalan ilmu tajwid berbasis augmented reality. Jurnal Ilmu Komputer (JIK), 10(1), 69–76.

Azizah, A. N., & Fatichah, C. (2023). Tajweed-YOLO: Object detection method for Tajweed by applying HSV color model augmentation on Mushaf images. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 7(2), 236–245. https://doi.org/10.29207/resti.v7i2.4739

Diwan, T., Anirudh, G., & Tembhurne, J. V. (2022). Object detection using YOLO: Challenges, architectural successors, datasets and applications. Multimedia Tools and Applications, 82(6), 9243–9275. https://doi.org/10.1007/s11042-022-13644-y

Hussein, B. M., & Shareef, S. M. (2024). An empirical study on the correlation between early stopping patience and epochs in deep learning. ITM Web of Conferences, 64, 01003. https://doi.org/10.1051/itmconf/20246401003

Julianda, R. R., & Puriyanto, R. D. (2024). Tracking ball using YOLOv8 method on wheeled soccer robot with omnidirectional camera. Buletin Ilmiah Sarjana Teknik Elektro, 6(2), 203–213. https://doi.org/10.12928/biste.v6i2.10816

Kamil, M. N., & Kosala, G. (2025). Zebra cross violation detection with YOLOv9: A novel approach for traffic regulation in Indonesia. Edumatic: Jurnal Pendidikan Informatika, 9(1), 41–50. https://doi.org/10.29408/edumatic.v9i1.29244

Kasem, M. S., Mahmoud, M., & Kang, H. S. (2023). Advancements and challenges in arabic optical character recognition: A comprehensive survey. arXiv preprint arXiv:2312.11812.

Kindarya, F., Kusumaningtyas, E. M., Barakbah, A., Permatasari, D. I., Al Rasyid, M. U. H., Ramadijanti, N., Fariza, A., Syarif, I., Sa’adah, U., Saputra, F. A., Ahsan, A. S., Sumarsono, I., Yunanto, A. A., Edelani, R., Primajaya, G. A., & Kusuma, S. F. (2024). Penerapan Aplikasi Klasifikasi Hukum Tajwid Menggunakan Image Processing. El-Mujtama: Jurnal Pengabdian Masyarakat, 4(2), 660–669. https://doi.org/10.47467/elmujtama.v4i2.1930

Kurniawardhani, A., & Fathurrahman, I. (2024). Identifikasi Hukum Tajwid pada Citra Teks Al Quran menggunakan SSD MobileNet v2. Jurnal Informatika Jurnal Pengembangan IT, 9(3), 234–241. https://doi.org/10.30591/jpit.v9i3.7713

Oksuz, K., Cam, B. C., Kalkan, S., & Akbas, E. (2021). Imbalance problems in object detection: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(10), 3388–3415. https://doi.org/10.1109/TPAMI.2020.2981890

Oktarina, M. (2020). Faedah mempelajari dan membaca Al-Qur’an dengan tajwid. Serambi Tarbawi, 8(2), 147–162. https://doi.org/10.32672/tarbawi.v8i2.5072

Padilla, R., Netto, S. L., & da Silva, E. A. B. (2020). A survey on performance metrics for object-detection algorithms. In 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 237–242. Brazil: IEEE. https://doi.org/10.1109/IWSSIP48289.2020.9145130

Salamah, S. R., & Apriandari, W. (2025). Klasifikasi Sifat Huruf Hijaiyah Dengan Metode Convolutional Neural Network (CNN). Jurnal Ilmiah Informatika Global, 16(2), 250-256.

Sathyanarayanan, S. (2024). Confusion matrix-based performance evaluation metrics. African Journal of Biomedical Research, 27(4s), 4023–4031. https://doi.org/10.1109/IWSSIP48289.2020.9145130

Taib, J. M., Satari, H., Fadil, S. A. S., & Jamil, H. M. T. (2020). An Evaluation Of An Interactive E-Tajweed System for The Surah of Yaasin. Journal of Critical Reviews, 7(8), 994-997.

Tanjung, A. F., & Ariza, F. N. (2025). Optimalisasi pembelajaran tajwid: Strategi interaktif dan digital untuk meningkatkan kualitas bacaan Al-Qur’an. Abdurrauf Science and Society, 1(2), 82–92.

Tripathi, A., Gupta, M. K., Srivastava, C., Dixit, P., & Pandey, S. K. (2022). Object detection using YOLO: A survey. International Conference on Contemporary Computing and Informatics (IC3I), 747–752. India: IEEE. https://doi.org/10.1109/IC3I56241.2022.10073281

Varghese, R., & Sambath, M. (2024). YOLOv8: A novel object detection algorithm with enhanced performance and robustness. International Conference on Advances in Data Engineering and Intelligent Computing Systems, 1–6. Chennai, India: IEEE..https://doi.org/10.1109/ADICS58448.2024.1053361

Downloads

Published

2025-08-16

How to Cite

Arfiansah, A., & Nasucha, M. (2025). Aplikasi Deteksi Otomatis Hukum Tajwid Utama pada Ayat Al-Qur’an menggunakan YOLOv8. Edumatic: Jurnal Pendidikan Informatika, 9(2), 542–550. https://doi.org/10.29408/edumatic.v9i2.30978