Klasifikasi Sentimen Ulasan E-Wallet menggunakan TF-IDF dan Random Forest dengan Penyeimbangan Data SMOTE

Authors

DOI:

https://doi.org/10.29408/edumatic.v9i2.31084

Keywords:

sentiment analysis, e-wallet, random forest, smote, tf-idf

Abstract

The increasing use of e-wallets in Indonesia highlights the need to understand user perceptions automatically and efficiently. One valuable data source is user reviews from the Google Play Store. This study aims to classify sentiment toward three major e-wallets, such as GoPay, OVO, and DANA to support service improvement. A quantitative approach is used with a machine learning-based classification method. A total of 30,000 reviews (10,000 per application) were collected using the google-play-scraper library. The data were processed through several stages: preprocessing (labeling, stopword removal, tokenization, and stemming), feature extraction using TF-IDF, data balancing with SMOTE, and classification with the Random Forest algorithm. Our findings show that the combination of Random Forest and SMOTE significantly improves model performance. Accuracy reached 90% (GoPay), 90% (OVO), and 87% (DANA). Precision, recall, and weighted f1-score were 90%, 89%, and 89% for GoPay; 90%, 90%, and 90% for OVO; and 88%, 88%, and 88% for DANA. WordCloud visualizations further support the findings by highlighting dominant words in each sentiment, such as “good,” “help,” and “lost.” Overall, the integration of TF-IDF, SMOTE, and Random Forest is proven effective and reliable for sentiment classification across the three e-wallet platforms.

References

Asfo, N. S., Setiawan, H. A., Pessireron, A. G., Saleh, M., & Ladjin, N. (2024). Analisis Determinan Penggunaan E Wallet Analysis Of Determinants Of E Wallet Use. Jurnal Kolaboratif Sains, 7(5), 1874–1884.

Berliana, H., & Yusuf, R. (2025). Analisis Sentimen Terhadap Penggunaan Donasi Korban Penyiraman Air Keras Pada Media Sosial X.Com Menggunakan Metode Bert. Journal of Science and Social Research, 4307(2), 1134–1142.

Dachi, J. M. A. S., & Sitompul, P. (2023). Analisis Perbandingan Algoritma Xgboost Dan Algoritma Random Forest Ensemble Learning Pada Klasifikasi Keputusan Kredit. Jurnal Riset Rumpun Matematika Dan Ilmu Pengetahuan Alam, 2(2), 87–103. https://doi.org/10.55606/jurrimipa.v2i2.1470

Damayanti, P., Purwitasari, D., & Suciati, N. (2021). Eliminasi Data Non-Topic Menggunakan Pemodelan Topik Untuk Peringkasan Otomatis Data Tweet Dengan Konteks Covid-19. Jurnal Teknologi Informasi Dan Ilmu Komputer (JTIIK), 8(1), 199–208. https://doi.org/10.25126/jtiik.202184324

Fitri, D. D., Agustian, S., Pizaini, P., & Sanjaya, S. (2024). Klasifikasi Sentimen Pada Dataset Terbatas Menggunakan Random Forest Dan Word2Vec. Journal of Computer System and Informatics (JoSYC), 6(1), 214–222. https://doi.org/10.47065/josyc.v6i1.6246

Haya, A. N., & Ramme, M. Y. (2024). Penerapan Algoritma Stacking Ensemble Machine Learning Berbasis Pohon Untuk Prediksi Penyakit Diabetes. Prosiding Seminar Nasional Sains Data, 4(1), 954–961. https://doi.org/10.33005/senada.v4i1.388

Istiqamah, N., & Rijal, M. (2024). Klasifikasi Ulasan Konsumen Menggunakan Random Forest Dan SMOTE. Journal of System and Computer Engineering (JSCE), 5(1), 66–77. https://doi.org/10.61628/jsce.v5i1.1061

Kaeren, & Andrianingsih. (2025). Analisis Sentimen Aplikasi Linkaja Di Google Play Store Menggunakan Algoritma Naïve Bayes Dan Random Forest. Jurnal Riset dan Aplikasi Mahasiswa Informatika, 6(2), 438–447. https://doi.org/10.30998/jrami.v6i02.13821

Khairi, M., Rianto, B., Chrismondari, Y., Jalil, M., Juita, H., & Sudeska, E. (2023). Peran Teknologi Dalam Transformasi Ekonomi Dan Bisnis Di Era Digital. JMEB Jurnal Manajemen Ekonomi & Bisnis, 1(01), 11–22. https://doi.org/10.59561/jmeb.v1i01.89

Larasati, F. A., Ratnawati, D. E., & Hanggara, B. T. (2022). Analisis Sentimen Ulasan Aplikasi Dana Dengan Metode Random Forest. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 6(9), 4305–4313.

Nadhilah, P., Jatikusumo, R. I., & Permana, E. (2021). Efektifitas Penggunaan E-Wallet Dikalangan Mahasiswa Dalam Proses Menentukan Keputusan Pembelian. JEMMA (Jurnal of Economic,Management , and Accounting ), 4(9), 128–138. https://doi.org/10.3 5914/jemma.v4i2.725

Nawang, A. H., & Aries, D. I. (2023). Analisis Sentimen Pada Aplikasi Dompet Digital Menggunakan Algoritma Random Forest. Journal of Emerging Information Systems and Business Intelligence, 4(3), 186–192.

Nurian, A., & Sari, B. N. (2023). Analisis Sentimen Ulasan Pengguna Aplikasi Google Play Menggunakan Naïve Bayes. Jurnal Informatika Dan Teknik Elektro Terapan, 11(3s1), 829–835. https://doi.org/10.23960/jitet.v11i3s1.3348

Pamungkas, A. S., & Cahyono, N. (2024). Analisis Sentimen Review Chatgpt Di Play Store Menggunakan Support Vector Machine Dan K-Nearest Neighbor. Edumatic: Jurnal Pendidikan Informatika, 8(1), 1–10. https://doi.org/10.29408/edumatic.v8i1.24114

Prasetyo, M. R., & Fahrurozi, A. (2023). Analisa Sentimen Pada Ulasan Google Untuk Hotel Gran Mahakam Jakarta Menggunakan Pendekatan Machine Learning. Jurnal Ilmiah Informatika Komputer, 28(3), 203–217. https://doi.org/10.35760/ik.2023.v28i3.9761

Rahmadani, R., Rahim, A., & Rudiman, R. (2024). Analisis Sentimen Ulasan “Ojol The Game” Di Google Play Store Menggunakan Algoritma Naive Bayes Dan Model Ekstraksi Fitur Tf-Idf Untuk Meningkatkan Kualitas Game. Jurnal Informatika Dan Teknik Elektro Terapan, 12(3), 145–156. https://doi.org/10.23960/jitet.v12i3.4988

Setiawan, A., & Suryono, R. R. (2024). Analisis Sentimen Ibu Kota Nusantara Menggunakan Algoritma Support Vector Machine Dan Naïve Bayes. Edumatic: Jurnal Pendidikan Informatika, 8(1), 183–192. https://doi.org/10.29408/edumatic.v8i1.25667

Sulistiyono, M., Pristyanto, Y., Adi, S., & Gumelar, G. (2021). Implementasi algoritma synthetic minority over-sampling technique untuk menangani ketidakseimbangan kelas pada dataset klasifikasi. Sistemasi: Jurnal Sistem Informasi, 10(2), 445-459. https://doi.org/10.32520/stmsi.v10i2.1303

Widianto, I. S., Ramadhan, Y. R., Ramadhan, Y. R., Komara, M. A., & Komara, M. A. (2024). Analisis Sentimen E-Wallet Gopay, Shopeepay, Dan Ovo Menggunakan Algoritma Naive Bayes. Jurnal Informatika Dan Teknik Elektro Terapan, 12(3S1), 4155–4163. https://doi.org/10.23960/jitet.v12i3s1.5277

Yutika, C. H., Adiwijaya, A., & Faraby, S. Al. (2021). Analisis Sentimen Berbasis Aspek Pada Review Female Daily Menggunakan TF-IDF Dan Naïve Bayes. Jurnal Media Informatika Budidarma, 5(2), 422-430. https://doi.org/10.30865/mib.v5i2.2845

Downloads

Published

2025-08-15

How to Cite

Syaputa, M. R., Arifin, M., & Fithri, D. L. (2025). Klasifikasi Sentimen Ulasan E-Wallet menggunakan TF-IDF dan Random Forest dengan Penyeimbangan Data SMOTE. Edumatic: Jurnal Pendidikan Informatika, 9(2), 532–541. https://doi.org/10.29408/edumatic.v9i2.31084