Integrasi Algoritma Apriori dan K-Means untuk Optimalisasi serta Analisis Pola Pemasaran Suku Cadang Otomotif
DOI:
https://doi.org/10.29408/edumatic.v9i3.31664Keywords:
apriori, automotive retail, inventory management, k-means, purchasing patternsAbstract
The automotive parts industry in Indonesia faces challenges of inefficient inventory management and a lack of understanding of customer purchasing patterns, resulting in overstocking or stockouts that cause financial losses. This study aims to apply association rule mining and K-Means clustering to automotive parts retail transaction data to uncover purchasing patterns and product segmentation to support effective inventory management and marketing strategies. Our research is quantitative in nature with a dataset of 14,165 transactions analyzed using Google Colab-Python. The Apriori algorithm was applied with a minimum support of 1% and confidence of 50%, while K-Means clustering was used for product segmentation with normalized numerical attributes. Association rule mining identified 15 significant rules with the strongest pattern between differential oil and brake fluid (confidence 73.5%, lift ratio 5.515). K-Means produced seven optimal clusters (silhouette score 0.68) that categorized products into premium, fast-moving, slow-moving, and other specific characteristics. The main contribution is an integrated framework that combines clustering to enrich the interpretation of association rules, enabling effective bundling strategies. Practical implications include a cross-selling recommendation system (15-20% revenue increase), differential pricing per cluster, and stock predictions that reduce overstocking by 25% and avoid stock-outs, supporting the digital transformation of data-driven retail management.
References
Amosu, O. R., Kumar, P., Fadina, A., Ogunsuji, Y. M., Oni, S., & Adetula, K. (2024). Harnessing real-time data analytics for strategic customer insights in e-commerce and retail. World Journal of Advanced Research and Reviews, 23(2), 880–889. https://doi.org/10.30574/wjarr.2024.23.2.2407
Artiarno, A. M., Setiaji, P., & Nugraha, F. (2025). K-Means Clustering untuk Segmentasi Pelanggan: Mengungkap Pola Pembelian Strategi Pemasaran pada Sektor Ritel. Edumatic: Jurnal Pendidikan Informatika, 9(2), 442–451. https://doi.org/10.29408/edumatic.v9i2.30336
Attaran, M. (2020). Digital technology enablers and their implications for supply chain management. Supply Chain Forum: An International Journal, 21(3), 158–172. https://doi.org/10.1080/16258312.2020.1751568
Dange, P., Meshram, S., Kharabe, M., Sonkusare, P., & Tonge, Y. (2023). Exploring Customer Segmentation With K-Means Clustering Algorithm. International Journal of Creative Research Thoughts, 11(4), 2320-2882.
Fister, I., Fister, I., Fister, D., Podgorelec, V., & Sanz, S. S. (2023). A comprehensive review of visualization methods for association rule mining: Taxonomy, challenges, open problems and future ideas. Expert Systems with Applications, 233, 120901. https://doi.org/10.1016/j.eswa.2023.120901
Garcia, M. A., Alonso, R. I., & Parra, M. A. (2024). A comprehensive framework for explainable cluster analysis. Information Sciences, 663, 120282. https://doi.org/10.1016/j.ins.2024.120282
Garg, V., & Jain, A. (2024). Scalable Data Integration Techniques for Multi-Retailer E-Commerce Platforms. International Journal of Computer Science and Engineering, 13(2), 525–570.
Geng, X., Yang, Z., Jiao, L., Zhou, Z.-J., & Ma, Z. (2025). Association rule-based classification: A comprehensive review of methodologies and applications. Expert Systems with Applications, 280, 127454. https://doi.org/10.1016/j.eswa.2025.127454
Gustriansyah, R., Alie, J., & Suhandi, N. (2024). A Hybrid Machine Learning Model for Market Clustering. Engineering, Technology & Applied Science Research, 14(6), 18824–18828. https://doi.org/10.48084/etasr.9259
Huo, Z., & Zhan, X. (2024). Revolutionizing Inventory Management: The Role of Data Mining in Industry 4.0. Advances in Economics, Management and Political Sciences, 109(1), 67–72. https://doi.org/10.54254/2754-1169/109/2024BJ0121
John, J. M., Shobayo, O., & Ogunleye, B. (2023). An Exploration of Clustering Algorithms for Customer Segmentation in the UK Retail Market. Analytics, 2(4), 809–823. https://doi.org/10.3390/analytics2040042
Kannan, M. K. J., & Khan, A. (2024). Big Data Analytics Unveiled Predicting Consumer Behavior through Data-Driven Strategies for Smart Retail Marketing. International Journal of Advance Research, December, 2454–132.
Li, H., & Sheu, P. C.-Y. (2021). A scalable association rule learning heuristic for large datasets. Journal of Big Data, 8(1), 86. https://doi.org/10.1186/s40537-021-00473-3
Mor, R. S., Bhardwaj, A., Kharka, V., & Kharub, M. (2021). Spare Parts Inventory Management in the Warehouse: A Lean Approach. International Journal of Industrial Engineering and Production Research, 32(3), 1–11.
Mujahid, M., Kına, E., Rustam, F., Villar, M. G., Alvarado, E. S., De La Torre Diez, I., & Ashraf, I. (2024). Data oversampling and imbalanced datasets: an investigation of performance for machine learning and feature engineering. Journal of Big Data, 11(1), 87. https://doi.org/10.1186/s40537-024-00943-4
Omol, E. J., Onyango, D. A., Mburu, L. W., & Abuonji, P. A. (2024). Apriori Algorithm and Market Basket Analysis to Uncover Consumer Buying Patterns: Case of a Kenyan Supermarket. Buana Information Technology and Computer Sciences (BIT and CS), 5(2), 51–63. https://doi.org/10.36805/bit-cs.v5i2.6082
Prasetyawan, D., Mulyanto, A., & Gatra, R. (2025). Pemetaan Lintasan Karir Alumni Berdasarkan Analisis Cluster: Kombinasi K-Means dan Reduksi Dimensi Autoencoder. Edumatic: Jurnal Pendidikan Informatika, 9(1), 198–207. https://doi.org/10.29408/edumatic.v9i1.29713
Prasetyawan, D., Mulyanto, A., & Gatra, R. (2025). Pemetaan Lintasan Karir Alumni Berdasarkan Analisis Cluster: Kombinasi K-Means dan Reduksi Dimensi Autoencoder. Edumatic: Jurnal Pendidikan Informatika, 9(1), 198–207. https://doi.org/10.29408/edumatic.v9i1.29713
Singh, A. (2025). Optimizing Retail Operations with AI-Driven Data Analytics. British Journal of Marketing Studies, 13(3), 72–84. https://doi.org/10.37745/bjms.2013/vol13n37284
Sowan, B., Zhang, L., Matar, N., Zraqou, J., Omar, F., & Alnatsheh, A. (2025). A novel lift adjustment methodology for improving association rule interpretation. Decision Analytics Journal, 15, 100582. https://doi.org/10.1016/j.dajour.2025.100582
Tripathi, M. A., Asiamah, J. O., Chinmulgund, A., Saravanan, A., Rao, T. S. M., P, R. H., & El-Ebiary, Y. A. B. (2025). Machine Learning Applications in Workforce Management: Strategies for Enhancing Productivity and Employee Engagement. International Journal of Advanced Computer Science and Applications, 16(3). https://doi.org/10.14569/IJACSA.2025.0160367
Wardhana, F. P., & Winarno, S. (2024). Analisis Pemain Terbaik Sepak Bola dengan menggunakan Algoritma K-Means . Edumatic: Jurnal Pendidikan Informatika, 8(2), 409–417. https://doi.org/10.29408/edumatic.v8i2.27105
Wawagalang, A. N. S., Syahrullah, S., Ardiyansyah, R., Angreni, D. S., Pratama, S. A., & Nugraha, D. W. (2025). Segmentasi Pelanggan Menggunakan Kerangka LRFMV dan Algoritma K-Means untuk Optimalisasi Strategi Pemasaran. Edumatic: Jurnal Pendidikan Informatika, 9(2), 639–648. https://doi.org/10.29408/edumatic.v9i2.31025
Yin, S., Ibrar, M., Teng, L., Li, H., & Sun, Y. (2024). Data Visualization Analysis Based on Explainable Artificial Intelligence : A Survey. IJLAI Transactions on Science and Engineering, 2(3), 24–31.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Benny Martha Dinata, Eri Zuliarso

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Semua tulisan pada jurnal ini adalah tanggung jawab penuh penulis. Edumatic: Jurnal Pendidikan Informatika bisa diakses secara free (gratis) tanpa ada pungutan biaya, sesuai dengan lisensi creative commons yang digunakan.

This work is licensed under a Lisensi a Creative Commons Attribution-ShareAlike 4.0 International License.


