Sistem Pakar Inklusif: Diagnosis Kesulitan Belajar Siswa dengan Teori Dempster-Shafer
DOI:
https://doi.org/10.29408/edumatic.v9i3.32107Keywords:
decision support system, dempster–shafer, dyslexia, expert system, learning difficulty diagnosisAbstract
Learning difficulties are complex issues in education that require early diagnosis to support effective and inclusive learning. This study aims to develop a web-based expert system using the Dempster–Shafer theory to diagnose students’ learning difficulties more comprehensively than conventional approaches such as Certainty Factor or Fuzzy Logic. The Dempster–Shafer method was selected for its ability to manage data uncertainty and overlapping symptoms. The research employed a Research and Development (R&D) approach with the Waterfall model, involving the stages of requirement analysis, system design, implementation, and testing. Data were collected from 50 students at MAS Teladan Ujung Kubu through teacher observations, exam results, and questionnaires from both students and parents. The findings indicate that the developed system can identify various types of learning difficulties such as dyslexia, dyscalculia, dysgraphia, and ADHD as well as categorize them into mild, moderate, and severe levels. The system functioned effectively without errors based on black box testing results. These outcomes demonstrate that the Dempster–Shafer theory is effective in handling diagnostic uncertainty and producing multi-level, comprehensive evaluations. Furthermore, the system shows potential for integration with artificial intelligence to support adaptive learning and personalized interventions within inclusive e-learning environments.
References
Alizadehsani, R., Roshanzamir, M., Hussain, S., Khosravi, A., Koohestani, A., Zangooei, M. H., Abdar, M., Beykikhoshk, A., Shoeibi, A., & Zare, A. (2024). Handling of uncertainty in medical data using machine learning and probability theory techniques: A review of 30 years (1991–2020). Annals of Operations Research, 339(3), 1077–1118. https://doi.org/10.1007/s10479-021-04006-2
Anggrawan, A., Hairani, H., Satria, C., & Dayani, A. D. (2023). Diagnosing Learning Disorders in Children: A comparison of certainty factor and Dempster-Shafer methods. International Journal of Information and Education Technology, 13(9), 1422–1429. https://doi.org/10.18178/ijiet.2023.13.9.1945
El-Din, D. M., Hassanein, A. E., & Hassanien, E. E. (2024). An adaptive and late multifusion framework in contextual representation based on evidential deep learning and Dempster–Shafer theory. Knowledge and Information Systems, 66(11), 6881–6932. https://doi.org/10.1007/s10115-024-02150-2
Fajariyanti, F. M., Agata, D., & Harsono, T. (2022). Expert system for learning disability classification in school-age children. International Conference on Applied Science and Technology on Social Science 2021 (ICAST-SS 2021), 231–237. https://doi.org/10.2991/assehr.k.220301.039
Hu, A. (2024). Developing an ai-based psychometric system for assessing learning difficulties and adaptive system to overcome: A qualitative and conceptual framework. ArXiv Preprint ArXiv:2403.06284.
Lakshmi, A. J., Kumar, A., Kumar, M. S., Patel, S. I., Naik, S. K. L., & Ramesh, J. V. N. (2023). Artificial intelligence in steering the digital transformation of collaborative technical education. The Journal of High Technology Management Research, 34(2), 100467. https://doi.org/10.1016/j.hitech.2023.100467
Liu, Z., & Li, D. (2025). Research of Dempster-Shafer’s Theory and Ensemble Classifier Financial Risk Early Warning Model Based on Benford’s Law. Computational Economics, 65(6), 3361–3389. https://doi.org/10.1007/s10614-024-10679-1
Lubis, R. A., & Irawan, M. D. (2023). Sistem Pakar menggunakan Metode Certainty Factor Mendiagnosa Gizi Buruk Balita berbasis Android. Edumatic: Jurnal Pendidikan Informatika, 7(2), 505–514. https://doi.org/10.29408/edumatic.v7i2.24340
Muhidin, A., Rilvani, E., & Naya, C. (2025). Model Hybird Fuzzy Logic dan Deep Learning untuk Prediksi Harga Saham. Edumatic: Jurnal Pendidikan Informatika, 9(2), 531–552. https://doi.org/10.29408/edumatic.v9i2.30890
Nugraheni, M., Nuraini, R., Tonggiroh, M., & Nurhayati, S. (2023). Expert System for Diagnosing Learning Disorders in Children Using the Dempster-Shafer Theory Approach. Sinkron: Jurnal Dan Penelitian Teknik Informatika, 7(4), 2513–2525. https://doi.org/10.33395/sinkron.v8i4.12960
Palilingan, T., Wahyono, T., Kristen, U., Wacana, S., Salatiga, S., Informasi, M. S., Informasi, F. T., & Satya, U. K. (2025). Expert System for Learning Styles Diagnosis Using Dempster – Shafer and Bayesian Network. 11(1), 126–139. https://doi.org/10.31154/cogito.v11i1.943.126-139
Putri, D. R. D., Fahlevi, M. R., Putri, F. A., Indriani, U., Mardiyah, M., & Andreansyah, D. (2025). Mobile-Based Application Implementing the Dempster-Shafer Method for Diagnosing Post-Traumatic Stress Disorder (PTSD). IJISTECH (International Journal of Information System and Technology), 9(1), 115–122.
Rahmawati, R., Nurwati, N., & Rohminatin, R. (2024). Sistem Pakar Konsultasi Penyakit Diare berbasis Web menggunakan Metode Certainty Factor. Edumatic: Jurnal Pendidikan Informatika, 8(2), 379–388. https://doi.org/10.29408/edumatic.v8i2.26703
Sairete, A., Balfagih, Z., Brahimi, T., Mousa, M. E. A., Lytras, M., & Visvizi, A. (2021). Artificial intelligence: Towards digital transformation of life, work, and education. In Procedia Computer Science, 194, 1–8. Elsevier. https://doi.org/10.1016/j.procs.2021.11.001
Sari, D. A. I., Nofriadi, N., & Mardalius, M. (2022). Penerapan Metode Forward Chaining pada Sistem Pakar Pendeteksi Awal Omicron. Edumatic: Jurnal Pendidikan Informatika, 6(2), 224–233. https://doi.org/10.29408/edumatic.v6i2.6316
Tarun, B., Du, H., Kannan, D., & Gehringer, E. F. (2025). Human-in-the-Loop Systems for Adaptive Learning Using Generative AI. ArXiv Preprint ArXiv:2508.11062.
Yactayo-Arias, C. (2024). Expert system for diagnosing learning disorders in children. International Journal of Electrical and Computer Engineering, 14(3), 2965–2975. https://doi.org/10.11591/ijece.v14i3.pp2965-2975
Yadav, U., & Shrawankar, U. (2025). Artificial intelligence across industries: A comprehensive review with a focus on education. AI Applications and Strategies in Teacher Education, 275–320. https://doi.org/10.4018/979-8-3693-5443-8.ch010
Zhang, Y., Yan, W., Hong, G. S., Fuh, J. F. H., Wang, D., Lin, X., & Ye, D. (2022). Data fusion analysis in the powder-bed fusion AM process monitoring by Dempster-Shafer evidence theory. Rapid Prototyping Journal, 28(5), 841–854. https://doi.org/10.1108/RPJ-10-2020-0242
Zolfagharnasab, M. H., Damari, S., Soltani, M., Ng, A., Karbalaeipour, H., Haghdadi, A., Saghayan, M. H., & Matinfar, F. (2025). A novel rule-based expert system for early diagnosis of bipolar and Major Depressive Disorder. Smart Health, 35, 100525. https://doi.org/10.1016/j.smhl.2024.100525
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Sri Rahayu Ningsih, Rohminatin Rohminatin, Rizaldi Rizaldi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Semua tulisan pada jurnal ini adalah tanggung jawab penuh penulis. Edumatic: Jurnal Pendidikan Informatika bisa diakses secara free (gratis) tanpa ada pungutan biaya, sesuai dengan lisensi creative commons yang digunakan.

This work is licensed under a Lisensi a Creative Commons Attribution-ShareAlike 4.0 International License.


