Sistem Pakar Inklusif: Diagnosis Kesulitan Belajar Siswa dengan Teori Dempster-Shafer

Authors

DOI:

https://doi.org/10.29408/edumatic.v9i3.32107

Keywords:

decision support system, dempster–shafer, dyslexia, expert system, learning difficulty diagnosis

Abstract

Learning difficulties are complex issues in education that require early diagnosis to support effective and inclusive learning. This study aims to develop a web-based expert system using the Dempster–Shafer theory to diagnose students’ learning difficulties more comprehensively than conventional approaches such as Certainty Factor or Fuzzy Logic. The Dempster–Shafer method was selected for its ability to manage data uncertainty and overlapping symptoms. The research employed a Research and Development (R&D) approach with the Waterfall model, involving the stages of requirement analysis, system design, implementation, and testing. Data were collected from 50 students at MAS Teladan Ujung Kubu through teacher observations, exam results, and questionnaires from both students and parents. The findings indicate that the developed system can identify various types of learning difficulties such as dyslexia, dyscalculia, dysgraphia, and ADHD as well as categorize them into mild, moderate, and severe levels. The system functioned effectively without errors based on black box testing results. These outcomes demonstrate that the Dempster–Shafer theory is effective in handling diagnostic uncertainty and producing multi-level, comprehensive evaluations. Furthermore, the system shows potential for integration with artificial intelligence to support adaptive learning and personalized interventions within inclusive e-learning environments.

References

Alizadehsani, R., Roshanzamir, M., Hussain, S., Khosravi, A., Koohestani, A., Zangooei, M. H., Abdar, M., Beykikhoshk, A., Shoeibi, A., & Zare, A. (2024). Handling of uncertainty in medical data using machine learning and probability theory techniques: A review of 30 years (1991–2020). Annals of Operations Research, 339(3), 1077–1118. https://doi.org/10.1007/s10479-021-04006-2

Anggrawan, A., Hairani, H., Satria, C., & Dayani, A. D. (2023). Diagnosing Learning Disorders in Children: A comparison of certainty factor and Dempster-Shafer methods. International Journal of Information and Education Technology, 13(9), 1422–1429. https://doi.org/10.18178/ijiet.2023.13.9.1945

El-Din, D. M., Hassanein, A. E., & Hassanien, E. E. (2024). An adaptive and late multifusion framework in contextual representation based on evidential deep learning and Dempster–Shafer theory. Knowledge and Information Systems, 66(11), 6881–6932. https://doi.org/10.1007/s10115-024-02150-2

Fajariyanti, F. M., Agata, D., & Harsono, T. (2022). Expert system for learning disability classification in school-age children. International Conference on Applied Science and Technology on Social Science 2021 (ICAST-SS 2021), 231–237. https://doi.org/10.2991/assehr.k.220301.039

Hu, A. (2024). Developing an ai-based psychometric system for assessing learning difficulties and adaptive system to overcome: A qualitative and conceptual framework. ArXiv Preprint ArXiv:2403.06284.

Lakshmi, A. J., Kumar, A., Kumar, M. S., Patel, S. I., Naik, S. K. L., & Ramesh, J. V. N. (2023). Artificial intelligence in steering the digital transformation of collaborative technical education. The Journal of High Technology Management Research, 34(2), 100467. https://doi.org/10.1016/j.hitech.2023.100467

Liu, Z., & Li, D. (2025). Research of Dempster-Shafer’s Theory and Ensemble Classifier Financial Risk Early Warning Model Based on Benford’s Law. Computational Economics, 65(6), 3361–3389. https://doi.org/10.1007/s10614-024-10679-1

Lubis, R. A., & Irawan, M. D. (2023). Sistem Pakar menggunakan Metode Certainty Factor Mendiagnosa Gizi Buruk Balita berbasis Android. Edumatic: Jurnal Pendidikan Informatika, 7(2), 505–514. https://doi.org/10.29408/edumatic.v7i2.24340

Muhidin, A., Rilvani, E., & Naya, C. (2025). Model Hybird Fuzzy Logic dan Deep Learning untuk Prediksi Harga Saham. Edumatic: Jurnal Pendidikan Informatika, 9(2), 531–552. https://doi.org/10.29408/edumatic.v9i2.30890

Nugraheni, M., Nuraini, R., Tonggiroh, M., & Nurhayati, S. (2023). Expert System for Diagnosing Learning Disorders in Children Using the Dempster-Shafer Theory Approach. Sinkron: Jurnal Dan Penelitian Teknik Informatika, 7(4), 2513–2525. https://doi.org/10.33395/sinkron.v8i4.12960

Palilingan, T., Wahyono, T., Kristen, U., Wacana, S., Salatiga, S., Informasi, M. S., Informasi, F. T., & Satya, U. K. (2025). Expert System for Learning Styles Diagnosis Using Dempster – Shafer and Bayesian Network. 11(1), 126–139. https://doi.org/10.31154/cogito.v11i1.943.126-139

Putri, D. R. D., Fahlevi, M. R., Putri, F. A., Indriani, U., Mardiyah, M., & Andreansyah, D. (2025). Mobile-Based Application Implementing the Dempster-Shafer Method for Diagnosing Post-Traumatic Stress Disorder (PTSD). IJISTECH (International Journal of Information System and Technology), 9(1), 115–122.

Rahmawati, R., Nurwati, N., & Rohminatin, R. (2024). Sistem Pakar Konsultasi Penyakit Diare berbasis Web menggunakan Metode Certainty Factor. Edumatic: Jurnal Pendidikan Informatika, 8(2), 379–388. https://doi.org/10.29408/edumatic.v8i2.26703

Sairete, A., Balfagih, Z., Brahimi, T., Mousa, M. E. A., Lytras, M., & Visvizi, A. (2021). Artificial intelligence: Towards digital transformation of life, work, and education. In Procedia Computer Science, 194, 1–8. Elsevier. https://doi.org/10.1016/j.procs.2021.11.001

Sari, D. A. I., Nofriadi, N., & Mardalius, M. (2022). Penerapan Metode Forward Chaining pada Sistem Pakar Pendeteksi Awal Omicron. Edumatic: Jurnal Pendidikan Informatika, 6(2), 224–233. https://doi.org/10.29408/edumatic.v6i2.6316

Tarun, B., Du, H., Kannan, D., & Gehringer, E. F. (2025). Human-in-the-Loop Systems for Adaptive Learning Using Generative AI. ArXiv Preprint ArXiv:2508.11062.

Yactayo-Arias, C. (2024). Expert system for diagnosing learning disorders in children. International Journal of Electrical and Computer Engineering, 14(3), 2965–2975. https://doi.org/10.11591/ijece.v14i3.pp2965-2975

Yadav, U., & Shrawankar, U. (2025). Artificial intelligence across industries: A comprehensive review with a focus on education. AI Applications and Strategies in Teacher Education, 275–320. https://doi.org/10.4018/979-8-3693-5443-8.ch010

Zhang, Y., Yan, W., Hong, G. S., Fuh, J. F. H., Wang, D., Lin, X., & Ye, D. (2022). Data fusion analysis in the powder-bed fusion AM process monitoring by Dempster-Shafer evidence theory. Rapid Prototyping Journal, 28(5), 841–854. https://doi.org/10.1108/RPJ-10-2020-0242

Zolfagharnasab, M. H., Damari, S., Soltani, M., Ng, A., Karbalaeipour, H., Haghdadi, A., Saghayan, M. H., & Matinfar, F. (2025). A novel rule-based expert system for early diagnosis of bipolar and Major Depressive Disorder. Smart Health, 35, 100525. https://doi.org/10.1016/j.smhl.2024.100525

Downloads

Published

2025-12-03

How to Cite

Ningsih, S. R., Rohminatin, R., & Rizaldi, R. (2025). Sistem Pakar Inklusif: Diagnosis Kesulitan Belajar Siswa dengan Teori Dempster-Shafer. Edumatic: Jurnal Pendidikan Informatika, 9(3), 679–688. https://doi.org/10.29408/edumatic.v9i3.32107