Pendekatan Machine Learning untuk Klasifikasi Kepribadian: Studi Logistic Regression dan Naive Bayes
DOI:
https://doi.org/10.29408/edumatic.v9i3.32211Keywords:
extrovert, introvert, logistic regression, naive bayes, personality classificationAbstract
Personality classification plays an important role in education, counseling, and recruitment. This study applies a quantitative approach in the form of computational experiments using machine learning algorithms, namely Logistic Regression and Naive Bayes. The data were obtained from a public Kaggle dataset consisting of 2,900 records, with 1,491 labeled as Extrovert and 1,409 as Introvert. The preprocessing stage involved converting categorical variables with LabelEncoder, normalizing numerical features using StandardScaler, and splitting the dataset into 80% for training and 20% for testing with 5-fold cross-validation. Model performance was evaluated using four metrics: Accuracy, Precision, Recall, and F1-Score, providing a more comprehensive assessment compared to previous studies that focused only on accuracy. Our findings show that Logistic Regression achieved an accuracy of 91%, while Naive Bayes yielded a higher accuracy of 92% and performed better in detecting the Introvert category. These results imply that simple algorithms remain relevant and effective in personality classification. The application of this research can assist counselors in identifying students’ personality types, support the development of learning strategies tailored to individual characteristics, and enhance the effectiveness of recruitment processes by aligning candidates’ personalities with organizational needs.
References
Aji, K. (2020). Sistem Pakar Tes Kepribadian Menggunakan Metode Naive Bayes. JOINTECS (Journal of Information Technology and Computer Science), 4(2), 75–78. https://doi.org/10.31328/jointecs.v4i2.1010
Bailly, A., Blanc, C., Francis, É., Guillotin, T., Jamal, F., Wakim, B., & Roy, P. (2022). Effects of dataset size and interactions on the prediction performance of logistic regression and deep learning models. Computer Methods and Programs in Biomedicine, 213, 106504. https://doi.org/10.1016/j.cmpb.2021.106504
Cahyani, O. N., & Budiman, F. (2025). Performa Logistic Regression dan Naive Bayes dalam Klasifikasi Berita Hoax di Indonesia. Edumatic: Jurnal Pendidikan Informatika, 9(1), 60–68. https://doi.org/10.29408/edumatic.v9i1.28987
Chen, H., Hu, S., Hua, R., & Zhao, X. (2021). Improved naive Bayes classification algorithm for traffic risk management. EURASIP Journal on Advances in Signal Processing, 2021(1), 30. https://doi.org/10.1186/s13634-021-00742-6
Itoo, F., Meenakshi, & Singh, S. (2021). Comparison and analysis of logistic regression, Naïve Bayes and KNN machine learning algorithms for credit card fraud detection. International Journal of Information Technology, 13(4), 1503-1511. https://doi.org/10.1007/s41870-020-00430-y
Karim, B. A. (2020). Teori Kepribadian dan Perbedaan Individu. Education and Learning Journal, 1(1), 40-49. https://doi.org/10.33096/eljour.v1i1.45
Khotimah, H., & Saputri, T. (2022). Correlation Between Introvert-Extrovert Personality and Students’ Speaking Ability. Education and Human Development Journal, 6(3), 61–72. https://doi.org/10.33086/ehdj.v6i3.2416
Laksono, W. A., & Astuti, Y. (2020). Metode Myer Briggs Type Indicator (MBTI) Untuk Tes Kepribadian Sebagai Media Pengembangan Diri. Journal of Information System Management (JOISM), 1(2), 22–27. https://doi.org/10.24076/JOISM.2020v1i2.443
Li, L., Zhou, Z., Bai, N., Wang, T., Xue, K. H., Sun, H., ... & Miao, X. (2022). Naive Bayes classifier based on memristor nonlinear conductance. Microelectronics Journal, 129, 105574. https://doi.org/10.1016/j.mejo.2022.105574
Liu, B., Wang, J., Li, Y. Y., Li, K. P., & Zhang, Q. (2023). The association between systemic immune-inflammation index and rheumatoid arthritis: evidence from NHANES 1999–2018. Arthritis research & therapy, 25(1), 34. https://doi.org/10.1186/s13075-023-03018-6
Masitoh, I., Supriadi, P., & Marliani, R. (2023). Dampak Kepribadian Introvert dalam Interaksi Sosial. Jurnal Pelita Nusantara, 1(2), 245–249. https://doi.org/10.59996/jurnalpelitanusantara.v1i2.203
Meilana, M., Astuti, Y., Wulandari, I. R., Sulistyowati, I., & Mimartiningtyas, B. A. (2021). Algoritma Naive Bayes untuk Mengklasifikasikan Kepribadian Siswa SMP Berdasarkan Tipologi Hippocrates-Galenus. SISTEMASI: Jurnal Sistem Informasi, 10(2), 480–489. https://doi.org/10.32520/stmsi.v10i2.1339
Mukharyahya, Z. A., Astuti, Y. P., & Cahyani, O. N. (2025). Perbandingan Naive Bayes dan Support Vector Machine dalam Klasifikasi Tingkat Kemiskinan di Indonesia. Edumatic: Jurnal Pendidikan Informatika, 9(1), 119–128. https://doi.org/10.29408/edumatic.v9i1.29512
Nisa, K., & Mirawati, M. (2022). Kepribadian Introvert Pada Remaja. Educativo: Jurnal Pendidikan, 1(2), 606–613. https://doi.org/10.56248/educativo.v1i2.79
Nugraha, G., & Zuhriah, Z. (2023). Kepribadian Introvert Dalam Kemampuan Bersosialisasi Pada Mahasiswa Ilmu Komunikasi. Jurnal Ilmu Komunikasi UHO : Jurnal Penelitian Kajian Ilmu Komunikasi Dan Informasi, 8(2), 223–231. https://doi.org/10.52423/jikuho.v8i2.39
Pangestu, N. S., & Yunianta, T. N. H. (2020). Proses Berpikir Kreatif Matematis Siswa Extrovert dan Introvert SMP Kelas VIII Berdasarkan Tahapan Wallas. Mosharafa: Jurnal Pendidikan Matematika, 8(2), 215–226. https://doi.org/10.31980/mosharafa.v8i2.472
Peretz, O., Koren, M., & Koren, O. (2024). Naive Bayes classifier–An ensemble procedure for recall and precision enrichment. Engineering Applications of Artificial Intelligence, 136, 108972. https://doi.org/10.1016/j.engappai.2024.108972
Prameswari, K., & Setiawan, E. B. (2020). Analisis Kepribadian Melalui Twitter Menggunakan Metode Logistic Regression dengan Pembobotan TF-IDF dan AHP. E-Proceeding of Engineering, 6(2), 9667–9682.
Prayitno, S. H. (2023). Pengaruh Kepribadian Introvert-Extrovert terhadap Kepercayaan Diri dan Kecemasan pada Mahasiswa. Jurnal Ilmiah Kesehatan Rustida, 10(1), 8–20. https://doi.org/10.55500/jikr.v10i1.171
Pulungan, M. P., Purnomo, A., & Kurniasih, A. (2024). Penerapan SMOTE untuk Mengatasi Imbalance Class dalam Klasifikasi Kepribadian MBTI Menggunakan Naive Bayes Classifier. Jurnal Teknologi Informasi Dan Ilmu Komputer, 11(5), 1033–1042. https://doi.org/10.25126/jtiik.2024117989
Putra, O. P., & Setiawan, B. D. (2025). Klasifikasi Kepribadian Model Big Five (OCEAN) Pada Esai Berbahasa Inggris Menggunakan Metode Naïve Bayes Dengan Seleksi Fitur Information Gain. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 9(7), 1–6.
Putri, N. D., Putri, Z. N. A., Alvido, N. A., Rahmawati, A. D., & Dewi, R. S. (2025). Efektivitas Tes MBTI Terhadap Keberhasilan Proses Konseling Kelompok. Guruku: Jurnal Pendidikan Dan Sosial Humaniora, 3(2), 75–93. https://doi.org/10.59061/guruku.v3i2.976
Reddy, E. M. K., Gurrala, A., Hasitha, V. B., & Kumar, K. V. R. (2022). Introduction to Naive Bayes and a review on its subtypes with applications. Bayesian reasoning and gaussian processes for machine learning applications, 1-14. https://doi.org/10.1201/9781003164265-1
Ridho, M. R., Arnomo, S. A., Fifi, F., Khisal, K., & Fariska, V. (2023). Prediksi Kepribadian Mahasiswa Menggunakan Naïve Bayes. Prosiding Seminar Nasional Ilmu Sosial Dan Teknologi (SNISTEK), 5, 8–14. https://doi.org/10.33884/psnistek.v5i.8056
Ristyawati, A. (2020). Efektifitas Kebijakan Pembatasan Sosial Berskala Besar Dalam Masa Pandemi Corona Virus 2019 oleh Pemerintah Sesuai Amanat UUD NRI Tahun 1945. Administrative Law and Governance Journal, 3(2), 240–249. https://doi.org/10.14710/alj.v3i2.240-249
Setiawan, A. (2022). Klasifikasi Kepribadian Seseorang Berdasarkan Postingan Twitter Dengan Algoritma Naïve Bayes Classification Studi Kasus: CV. Wilis Elektronik. INDEXIA, 4(2), 1. https://doi.org/10.30587/indexia.v4i2.4301
Shang, Y. (2024). Prevention and detection of DDOS attack in virtual cloud computing environment using Naive Bayes algorithm of machine learning. Measurement: Sensors, 31, 100991. https://doi.org/10.1016/j.measen.2023.100991
Song, X., Liu, X., Liu, F., & Wang, C. (2021). Comparison of machine learning and logistic regression models in predicting acute kidney injury: A systematic review and meta-analysis. International journal of medical informatics, 151, 104484. https://doi.org/10.1016/j.ijmedinf.2021.104484
Wang, Z., Huang, S., Wang, J., Sulaj, D., Hao, W., & Kuang, A. (2021). Risk factors affecting crash injury severity for different groups of e-bike riders: A classification tree-based logistic regression model. Journal of safety research, 76, 176-183. https://doi.org/10.1016/j.jsr.2020.12.009
Yulianti, Y., Ar-Roufu, T. M., Pratama, A. W., Subagja, R., Darmawan, A. A., & Wibowo, E. P. (2024). Implementasi Test Kepribadian Untuk Mengenal Diri. Menara Ilmu, 18(2), 78–84. https://doi.org/10.31869/mi.v18i2.5325
Zhao, J., Li, Z., Gao, Q., Zhao, H., Chen, S., Huang, L., ... & Wang, T. (2021). A review of statistical methods for dietary pattern analysis. Nutrition journal, 20(1), 37. https://doi.org/10.1186/s12937-021-00692-7
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Laurensius Marcellano Adi Pradana, Fikri Budiman, Defri Kurniawan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Semua tulisan pada jurnal ini adalah tanggung jawab penuh penulis. Edumatic: Jurnal Pendidikan Informatika bisa diakses secara free (gratis) tanpa ada pungutan biaya, sesuai dengan lisensi creative commons yang digunakan.

This work is licensed under a Lisensi a Creative Commons Attribution-ShareAlike 4.0 International License.


