Forecasting Penjualan Sembako berbasis Model Prophet: Strategi Efisiensi Stok pada pada Ritel Tradisional
DOI:
https://doi.org/10.29408/edumatic.v9i3.32251Keywords:
forecasting, inventory optimization, prophet, seasonal demand, small-scale retailAbstract
Maintaining a stable supply of staple commodities remains a major challenge for retail stores, as inventory management often relies on intuition rather than data-driven insights, leading to potential losses from overstocking or missed sales when supplies run out. This study implements the Prophet model to forecast staple-food sales and to support data-driven inventory optimization. In contrast to previous research that has predominantly focused on large-scale industries or e-commerce, this study examines small-scale retail settings characterized by pronounced seasonal demand fluctuations. Monthly sales data from August 2023 to May 2025 were analyzed using the Prophet model, with performance evaluated through MAE, RMSE, and MAPE metrics. The Prophet model was selected for its capability to capture nonlinear trends and seasonal effects without the complex parameterization required by models such as ARIMA. The results show an average forecasting accuracy of 94.09%, demonstrating the model’s adaptability in identifying sales fluctuations during seasonal periods such as Ramadan. Practically, the findings assist store owners in optimizing stock levels and promotional strategies, while academically the study extends the forecasting literature within small-scale retail contexts with limited data. The novelty of this research lies in applying the Prophet model to enhance data-driven inventory-management decisions in micro and small enterprises exhibiting irregular seasonal patterns.
References
Armansyah, A., & Ramli, R. K. (2022). Model prediksi kelulusan mahasiswa tepat waktu dengan metode Naïve Bayes. Edumatic: Jurnal Pendidikan Informatika, 6(1), 1-10. https://doi.org/10.29408/edumatic.v6i1.4789
Atamimi, F. M. H., Wintanti, W., & Abdillah, G. (2025). Enhanching Prophet Time Series Forecasting on Sparse Data via Hyperparameter Optimizattion: A Case Study in Retail. Sinkron, 9(2), 1000–1007. https://doi.org/10.33395/sinkron.v9i2.14804
Azzahra, A., Ramdhan, W., & Kifti, W. M. (2022). Single Exponential Smoothing: Metode Peramalan Kebutuhan Vaksin Campak. Edumatic: Jurnal Pendidikan Informatika, 6(2), 215–223. https://doi.org/10.29408/edumatic.v6i2.6299
Bisma, M. H., Hakim, M. A., Arifin, R., & Susena, E. (2025). Sistem Informasi Manajemen Stok Toko Kelontong Berbasis Web untuk Pencatatan Stok di Toko Dandung. Switch: Jurnal Sains Dan Teknologi Informasi, 3(1), 19–34. https://doi.org/10.62951/switch.v3i4.507
Damaliana, A. T., Hindrayani, K. M., & Fahrudin, T. M. (2025). Hybrid Holt Winter-Prophet method to forecast the num-ber of foreign tourist arrivals through Bali’s Ngurah Rai Airport. International Journal of Data Science Engineering, and Analytics, 3(2), 1–11. https://doi.org/10.33005/ijdasea.v3i2.8
Haryanto, H. (2024). Implementasi Sistem Pengendalian Inventory pada UMKM Warung Awi Makanan Khas Selatpanjang. Pemberdayaan Masyarakat : Jurnal Aksi Sosial, 1(4), 115–124. https://doi.org/10.62383/aksisosial.v1i4.942
Hyndman, R. J. (2024). Forecasting short course. In R. J Hyndman (Ed.), Proceedings of the Forecasting Workshop, University of Western Australia (1st ed., pp. 1–138). University of Western Australia.
Kenyi, M. G. S., & Yamamoto, K. (2024). A hybrid SARIMA-Prophet model for predicting historical streamflow time-series of the Sobat River in South Sudan. Discover Applied Sciences, 6(9), 457. https://doi.org/10.1007/s42452-024-06083-x
Kristianto, B. A., Licantik, L., Sari, N. N. K., & Widiatry, W. (2025). Penerapan Business Forecasting dengan Metode Arima (Autoregressive Integrated Moving Average) dalam Meramalkan Penjualan Produk di Cafe The Garrison. JOINTECOMS (Journal of Information Technology and Computer Science), 5(1), 90-99.
Meliani, S., Siagian, Y., & Ananda, R. (2024). Sistem Forecasting Permintaan Tempe menggunakan Metode Weighted Moving Average. Edumatic: Jurnal Pendidikan Informatika, 8(1), 133–142. https://doi.org/10.29408/edumatic.v8i1.25632
Menculini, L., Marini, A., Proietti, M., Garinei, A., Bozza, A., Moretti, C., & Marconi, M. (2021). Comparing Prophet and Deep Learning to ARIMA in Forecasting Wholesale Food Prices. Forecasting, 3(3), 644–662. https://doi.org/10.3390/forecast3030040
Muttaqin, W. M. I., Ramdhan, W., & Kifti, W. M. (2022). Sistem Peramalan Permintaan Darah dengan Metode Simple Moving Average. Edumatic: Jurnal Pendidikan Informatika, 6(2), 242–251. https://doi.org/10.29408/edumatic.v6i2.6326
Omotoye, E., & Rotimi, B. (2025). Stationarity in Prophet Model Forecast: Performance Evaluation Approach. American Journal of Theoretical and Applied Statistics, 14(3), 109–117. https://doi.org/10.11648/j.ajtas.20251403.12
Pradita, S. P. (2024). Product inventory control at a local brand forum outlet using ABC analysis. Agrointek : Jurnal Teknologi Industri Pertanian, 18(2), 246–255. https://doi.org/10.21107/agrointek.v18i2.18819
Primandari, A. H. (2024). A Multivariate Approach: Forecasting Jakarta Composite Using Prophet Facebook. Jurnal Statistika Dan Aplikasinya, 8(1), 128–137. https://doi.org/10.21009/jsa.08111
Purnamasari, D. I., Permadi, V. A., Saepudin, A., & Agusdin, R. P. (2023). Demand Forecasting for Improved Inventory Management in Small and Medium-Sized Businesses. Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), 12(1), 56–66. https://doi.org/10.23887/janapati.v12i1.57144
Rahayu, A., Lattu, A., & Mupaat, M. (2022). Analysis of product stock inventory forecasting using weighted moving average method. Jurnal Teknik Informatika (Jutif), 3(6), 1631-1638. https://doi.org/10.20884/1.jutif.2022.3.6.421
Sunki, A., SatyaKumar, C., Surya Narayana, G., Koppera, V., & Hakeem, M. (2024). Time series forecasting of stock market using ARIMA, LSTM and FB prophet. MATEC Web of Conferences, 392, 01163. https://doi.org/10.1051/matecconf/202439201163
Suryawan, I. G. T., Putra, I. K. N., Meliana, P. M., & Sudipa, I. G. I. (2024). Performance Comparison of ARIMA, LSTM, and Prophet Methods in Sales Forecasting. Sinkron, 8(4), 2410–2421. https://doi.org/10.33395/sinkron.v8i4.14057
Zach, A. (2025). Data-Driven Forecasting and Inventory Optimization in Retail Supply Chains Using Hybrid Machine Learning Models. International Journal of Economics and Commerce Research (IJECR), 5(1), 28–34.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Haikal Tirta Albanna, Diana Diana

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Semua tulisan pada jurnal ini adalah tanggung jawab penuh penulis. Edumatic: Jurnal Pendidikan Informatika bisa diakses secara free (gratis) tanpa ada pungutan biaya, sesuai dengan lisensi creative commons yang digunakan.

This work is licensed under a Lisensi a Creative Commons Attribution-ShareAlike 4.0 International License.


