Mentransformasi Pemilihan Sekolah: Integrasi Flask dan TOPSIS untuk Rekomendasi SMA yang berbasis Preferensi Individu

Authors

DOI:

https://doi.org/10.29408/edumatic.v9i3.32261

Keywords:

adaptive weighting, decision support system, flask, high school selection, topsis

Abstract

The selection of Senior High Schools (SMA) is often conducted subjectively without objective analysis, while previous studies on decision support systems (DSS) mostly used SAW or AHP methods with fixed weights, resulting in less adaptive recommendations. This study aims to develop and evaluate a web-based DSS integrating the TOPSIS method and Flask framework to provide SMA recommendations through customizable criteria weighting. The system was developed using the Waterfall model consisting of requirement analysis, design, implementation, and testing stages. Six main criteria were used: distance, location, academic achievement, non-academic achievement, accreditation, and extracurricular activities. The developed system successfully generates automated and responsive school recommendations based on user preferences. The black-box testing confirmed that all main functions worked properly, while the Spearman correlation test yielded a value of 0.9758, indicating very high accuracy and strong consistency between system results and manual calculations. These findings demonstrate that applying adaptive weighting within the TOPSIS method enriches the multi-criteria decision-making (MCDM) framework by introducing a personalized decision-making approach. Practically, the system assists users in making educational choices that are more objective, transparent, and aligned with individual needs.

References

Ali, R., Hussain, A., Nazir, S., Khan, S., & Khan, H. U. (2023). Intelligent decision support systems—An analysis of machine learning and multicriteria decision-making methods. Applied Sciences (Switzerland), 13(22), 12426. https://doi.org/10.3390/app132212426

Atmojo, S., Dewi, S., Widhiyanta, N., & Utami, R. (2021). Sistem informasi rekomendasi pemilihan sekolah dasar dengan metode AHP: Studi kasus Surabaya Barat. Edutic - Scientific Journal of Informatics Education, 7(2), 85–93. https://doi.org/10.21107/edutic.v7i2.8383

Bánhidi, Z., & Dobos, I. (2024). Sensitivity of TOPSIS ranks to data normalization and objective weights on the example of digital development. Central European Journal of Operations Research, 32(1), 29–44. https://doi.org/10.1007/s10100-023-00876-y

Campoverde-Molina, M., Luján-Mora, S., & Valverde, L. (2023). Accessibility of university websites worldwide: A systematic literature review. Universal Access in the Information Society, 22(1). Springer Berlin Heidelberg. https://doi.org/10.1007/s10209-021-00825-z

Cavallo, B., & Ishizaka, A. (2023). Evaluating scales for pairwise comparisons. Annals of Operations Research, 325(2), 951–965. https://doi.org/10.1007/s10479-022-04682-8

Chen, Q. (2024). Application of entropy weight and TOPSIS method in English teaching quality evaluation of “smart classroom.” EAI Endorsed Transactions on Scalable Information Systems, 11(1), 1–10. https://doi.org/10.4108/eetsis.4218

Combrinck, C. (2024). Not liking the Likert? A Rasch analysis of forced-choice format and usefulness in survey design. SAGE Open, 14(4), 1–18. https://doi.org/10.1177/21582440241295501

Forcina, A., Silvestri, L., De Felice, F., & Falcone, D. (2024). Exploring Industry 4.0 technologies to improve manufacturing enterprise safety management: A TOPSIS-based decision support system and real case study. Safety Science, 169, 106351. https://doi.org/10.1016/j.ssci.2023.106351

Fransiska, R., Siagian, Y., & Rohminatin, R. (2024). Sistem pendukung keputusan menggunakan metode TOPSIS untuk seleksi guru terbaik. Edumatic: Jurnal Pendidikan Informatika, 8(1), 232–241. https://doi.org/10.29408/edumatic.v8i1.25747

Gao, C., Elzarka, H., Yan, H., Chakraborty, D., & Zhou, C. (2023). A hybrid TOPSIS-structure entropy weight group subcontractor selection model for large construction companies. Buildings, 13(6), 1535. https://doi.org/10.3390/buildings13061535

Ing, E. B. (2021). A Survey-Weighted Analytic Hierarchy Process to Quantify Authorship. Advances in Medical Education and Practice, 12, 1021–1031. https://doi.org/10.2147/AMEP.S328648

Khan, H. U., Abbas, M., Alruwaili, O., Nazir, S., Siddiqi, M. H., & Alanazi, S. (2024). Selection of a smart and secure education school system based on the internet of things using entropy and TOPSIS approaches. Computers in human behavior, 159, 108346. https://doi.org/10.1016/j.chb.2024.108346

Kovari, A. (2024). AI for decision support: Balancing accuracy, transparency, and trust across sectors. Information, 15, 1072. https://doi.org/10.3390/info1511072

Kuo, T., & Chen, M.-H. (2023). On using pairwise comparison in the analytic hierarchy process: Validity is goal while consistency is means. Information Sciences, 648, 119630. https://doi.org/10.1016/j.ins.2023.119630

Lu, Y., Wang, C., Zhang, J., & Chen, L. (2025). Exploring the impact of online reviews and social media word-of-mouth on school reputation and academic performance. Journal of School Choice: International Research and Reform, 19(3), 245–263. https://doi.org/10.1080/15582159.2024.2391150

Martins, C. L., Zaraté, P., de Almeida, A. T., de Almeida, J. A., & Morais, D. C. (2021). Web-based DSS for resource allocation in higher education. International Journal of Decision Support System Technology, 13(4), 71–93. https://doi.org/10.4018/IJDSST.2021100105

Oktaviani, C. R., & Mayatopani, H. (2023). Sistem pendukung keputusan pemilihan sekolah menengah atas swasta menggunakan metode weighted product. Progresif: Jurnal Ilmiah Komputer, 19(1), 289. https://doi.org/10.35889/progresif.v19i1.1066

Pinto-DelaCadena, P. A., Liern, V., & Vinueza-Cabezas, A. (2024). A comparative analysis of multi-criteria decision methods for personnel selection: A practical approach. Mathematics, 12(2), 324. https://doi.org/10.3390/math12020324

Radulescu, C. Z., & Radulescu, M. (2024). A hybrid group multi-criteria approach based on SAW, TOPSIS, VIKOR, and COPRAS methods for complex IoT selection problems. Electronics (Switzerland), 13(4), 0789. https://doi.org/10.3390/electronics13040789

Roszkowska, E., & Wachowicz, T. (2024). Impact of normalization on entropy-based weights in Hellwig’s method: A case study on evaluating sustainable development in the education area. Entropy, 26(5), 365. https://doi.org/10.3390/e2605036 5

Shaikh, S. A., Memon, M., & Kim, K. S. (2021). A multi-criteria decision-making approach for ideal business location identification. Applied Sciences (Switzerland), 11(11), 4983. https://doi.org/10.3390/app11114983

Sopyan, A., & Miftahudin, M. (2024). Penerapan metode TOPSIS untuk rekomendasi promosi jabatan kepala sekolah tingkat SD di Kabupaten Bogor. TeknoIS: Jurnal Ilmiah Teknologi Informasi dan Sains, 14(2), 173–185. https://doi.org/10.36350/jbs.v14i2.253

Troussas, C., Krouska, A., Mylonas, P., & Sgouropoulou, C. (2025). Personalized instructional strategy adaptation using TOPSIS: A multi-criteria decision-making approach for adaptive learning systems. Information (Switzerland), 16(5), 409. https://doi.org/10.3390/info16050409

Vahidnia, M. H., Minaei, M., & Behzadi, S. (2024). An ontology-based web decision support system to find entertainment points of interest in an urban area. Geo-Spatial Information Science, 27(2), 505–522. https://doi.org/10.1080/10095020.2022.2161954

Youssef, A. E., & Saleem, K. (2023). A hybrid MCDM approach for evaluating web-based e-learning platforms. IEEE Access, 11, 72436–72447. https://doi.org/10.1109/ACCESS.2023.3294798

Zhong, J., Zhang, L., Alhabo, M., Serugunda, J., & Mugala, S. N. (2024). A hybrid scheme using TOPSIS and Q-learning for handover decision making in UAV assisted heterogeneous network. IEEE Access, 12, 31422–31430. https://doi.org/10.1109/ACCESS.2024.3368916

Downloads

Published

2025-12-04

How to Cite

Khalidzah, N., Hamrul, H., & Wajidi, F. (2025). Mentransformasi Pemilihan Sekolah: Integrasi Flask dan TOPSIS untuk Rekomendasi SMA yang berbasis Preferensi Individu . Edumatic: Jurnal Pendidikan Informatika, 9(3), 708–717. https://doi.org/10.29408/edumatic.v9i3.32261