Pendekatan Denoising Hibrid untuk Pengenalan Aksara Jawa: Upaya Integrasi Teknologi dan Pelestarian Budaya Digital
DOI:
https://doi.org/10.29408/edumatic.v9i3.32376Keywords:
digital cultural preservation, hybrid denoising, heritage computer vision, javanese script, structural-preserving denoisingAbstract
The digitization of Javanese manuscripts is hindered by image degradation such as bleed-through, stains, blur, and uneven illumination that obscures fine graphemic details and reduces the reliability of optical character recognition (OCR). This challenge is significant for computational heritage preservation, as degraded visual inputs threaten the accuracy and longevity of digital cultural archives. This study applies and evaluates a Structural-Preserving Denoising (SPD) approach designed to retain graphemic contours during noise reduction. Using a comparative-experimental design, six denoising methods (Wavelet, Bilateral, Non-Local Means/NLM, and three hybrids) were tested as independent variables, with PSNR, SSIM, and OCR accuracy as dependent variables. A dataset of 4,632 degraded Javanese character images (64×64 pixels) was processed using Histogram of Oriented Gradients and classified via a cosine-kernel Support Vector Machine. Analyses included comparative evaluation, error analysis, and Pearson correlation. Results show that Bilateral Filtering achieved the best balance of structural preservation and recognition performance (SSIM 0.9108; PSNR 29.85 dB, accuracy 96.97%). The strong correlation between visual quality and OCR accuracy indicates that maintaining graphemic structure is crucial for robust recognition. The study contributes a theoretical SPD framework and a practical preprocessing pipeline applicable to the digital preservation of traditional scripts.
References
Anggraeny, F. T., Via, Y. V., & Mumpuni, R. (2023). Image preprocessing analysis in handwritten Javanese character recognition. Bulletin of Electrical Engineering and Informatics, 12(2), 860–867. https://doi.org/10.11591/eei.v12i2.4172
Anuradha, I., Liyanage, C., & Weerasinghe, R. (2021). Estimating the Effects of Text Genre, Image Resolution and Algorithmic Complexity needed for Sinhala Optical Character Recognition. International Journal on Advances in ICT for Emerging Regions (ICTer), 14(3), 43–51. https://doi.org/10.4038/icter.v14i3.7231
Bataineh, B., Tounsi, M., Zamzami, N., Janbi, J., Abu-ain, W. A. K., AbuAin, T., & Elnazer, S. (2025). A Comprehensive Review on Document Image Binarization. Journal of Imaging, 11(5), 133. https://doi.org/10.3390/jimaging11050133
Boudraa, M., Bennour, A., Mekhaznia, T., Alqarafi, A., Marie, R. R., Al-Sarem, M., & Dogra, A. (2024). Revolutionizing Historical Manuscript Analysis: A Deep Learning Approach with Intelligent Feature Extraction for Script Classification. Acta Informatica Pragensia, 13(2), 251. https://doi.org/10.18267/j.aip.239
Damayanti, F., Yuniarno, E. M., & Suprapto, Y. K. (2024). Deep Learning-Based Inpainting for Reconstructing Severely Damaged Handwritten Javanese Characters. Register: Jurnal Ilmiah Teknologi Sistem Informasi, 10(2), 160–174. https://doi.org/10.26594/register.v10i2.4929
El Khayati, M., Kich, I., & Taouil, Y. (2024). CNN-based Methods for Offline Arabic Handwriting Recognition: A Review. Neural Processing Letters, 56(2), 115. https://doi.org/10.1007/s11063-024-11544-w
Ge, Y., Zhang, Y., & Roh, S.-B. (2025). FAIR-Net: A Fuzzy Autoencoder and Interpretable Rule-Based Network for Ancient Chinese Character Recognition. Sensors, 25(18), 5928. https://doi.org/10.3390/s25185928
Gonwirat, S., & Surinta, O. (2022). DeblurGAN-CNN: Effective Image Denoising and Recognition for Noisy Handwritten Characters. IEEE Access, 10, 90133–90148. https://doi.org/10.1109/ACCESS.2022.3201560
Guo, Y., Davy, A., Facciolo, G., Morel, J.-M., & Jin, Q. (2021). Fast, Nonlocal and Neural: A Lightweight High Quality Solution to Image Denoising. IEEE Signal Processing Letters, 28, 1515–1519. https://doi.org/10.1109/LSP.2021.3099963
Kaneko, H., Ishibashi, R., & Meng, L. (2023). Deteriorated Characters Restoration for Early Japanese Books Using Enhanced CycleGAN. Heritage, 6(5), 4345–4361. https://doi.org/10.3390/heritage6050230
Ke, W., Hou, Q., Liu, Y., Song, X., & Wei, J. (2024). SARN: Script-Aware Recognition Network for scene multilingual text recognition. Expert Systems with Applications, 250, 123753. https://doi.org/10.1016/j.eswa.2024.123753
Maheswari, S. U., Maheswari, P. U., & Aakaash, G. R. S. (2024). An intelligent character segmentation system coupled with deep learning based recognition for the digitization of ancient Tamil palm leaf manuscripts. Heritage Science, 12(1), 342. https://doi.org/10.1186/s40494-024-01438-4
Mao, J., Sun, L., Chen, J., & Yu, S. (2025). Overview of Research on Digital Image Denoising Methods. Sensors, 25(8), 2615. https://doi.org/10.3390/s25082615
Pratama, N. Z. S., & Ratnasari, C. I. (2024). Sinau: Javanese Educational Games for Early Childhood as an Effort to Preserve Javanese Heritage. Edumatic: Jurnal Pendidikan Informatika, 8(2), 645–654. https://doi.org/10.29408/edumatic.v8i2.27889
Rahman, M. G., & Islam, M. Z. (2022). A Framework for Supervised Heterogeneous Transfer Learning Using Dynamic Distribution Adaptation and Manifold Regularization. IEEE Transactions on Services Computing, 1–18. https://doi.org/10.1109/TSC.2022.3213238
Rosalina, R., Afriliana, N., Utomo, W. H., & Sahuri, G. (2024). Deep learning utilization in Sundanese script recognition for cultural preservation. Indonesian Journal of Electrical Engineering and Computer Science, 36(3), 1759. https://doi.org/10.11591/ijeecs.v36.i3.pp1759-1768
Ruldeviyani, Y., Suhartanto, H., Sotardodo, B. A., Fahreza, M. H., Septiano, A., & Rachmadi, M. F. (2024). Character recognition system for pegon typed manuscript. Heliyon, 10(16), e35959. https://doi.org/10.1016/j.heliyon.2024.e35959
Salehudin, M. A. M., Basah, S. N., Yazid, H., Basaruddin, K. S., Safar, M. J. A., Som, M. H. M., & Sidek, K. A. (2023). Analysis of Optical Character Recognition using EasyOCR under Image Degradation. Journal of Physics: Conference Series, 2641(1), 012001. https://doi.org/10.1088/1742-6596/2641/1/012001
Siahaan, D., Sutramiani, N. P., Suciati, N., Duija, I. N., & Darma, I. W. A. S. (2022). DeepLontar dataset for handwritten Balinese character detection and syllable recognition on Lontar manuscript. Scientific Data, 9(1), 761. https://doi.org/10.1038/s41597-022-01867-5
Sun, L., Li, H., & Muhammad, G. (2023). A Metaverse text recognition model based on character-level contrastive learning. Applied Soft Computing, 149, 110969. https://doi.org/10.1016/j.asoc.2023.110969
Zhang, H., Gao, G., & Bao, F. (2025). Multi-scene Traditional Mongolian OCR and Its Public Dataset. Data Intelligence, 2025. https://doi.org/10.3724/2096-7004.di.2025.0119
Zhang, Y., Zhu, Y., Peng, D., Zhang, P., Yang, Z., Yang, Z., Yao, C., & Jin, L. (2025). HierCode: A lightweight hierarchical codebook for zero-shot Chinese text recognition. Pattern Recognition, 158, 110963. https://doi.org/10.1016/j.patcog.2024.110963
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Aji Priyambodo, Prihati Prihati

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
All articles in this journal are the sole responsibility of the authors. Edumatic: Jurnal Pendidikan Informatika can be accessed free of charge, in accordance with the Creative Commons license used.

This work is licensed under a Lisensi a Creative Commons Attribution-ShareAlike 4.0 International License.


