Optimasi Decision Tree menggunakan Pendekatan Ensemble Bagging untuk Klasifikasi Klinis Hipertensi

Authors

DOI:

https://doi.org/10.29408/edumatic.v9i3.32400

Keywords:

bagging, classification, decision tree, hypertension

Abstract

Hypertension is a common health problem with a high risk of serious complications, so it is important to detect it early. This study is an experimental quantitative study that aims to improve the accuracy of the hypertension classification model by optimizing the Decision tree algorithm using the Bagging ensemble method. The aspects studied include the effect of data balancing techniques on the performance of classification models in detecting the risk of hypertension. The dataset used consisted of 2,655 medical records of primary health care patients. The research stages included data pre-processing with imputation, normalization, and balancing with SMOTE, Decision Tree and Bagging modeling, and model evaluation using 5-fold cross-validation, Confusion Matrix, ROC-AUC, and paired t-test. The results showed that the application of Bagging significantly improved the performance of the Decision Tree (p < 0.05) with an accuracy of 96.88%, precision of 95.56%, recall of 98.32%, F1-score of 96.93%, and AUC of 0.996. This improvement indicates that the Bagging method is able to reduce model variance and produce more stable predictions on imbalanced clinical data. These findings contribute to the development of a classification model based on real clinical data, which also opens up opportunities for the development of machine learning-based Clinical Decision Support System (CDSS) for early detection of hypertension in primary health facilities.

References

Aditya, M. F. R., Lutvi, N., & Indahyanti, U. (2024). Prediksi Penyakit Hipertensi Menggunakan Metode Decison Tree dan Random Forest. Jurnal Ilmiah Komputasi, 23(1), 9–16. https://doi.org/10.32409/jikstik.23.1.3503

Agustriya, M., & Ula, M. (2024). Analisis Kinerja Algoritma Klasifikasi Naïve Bayes Menggunakan Genetic Algorithm dan Bagging untuk Data Publik Risiko Transaksi Kartu Kredit. JUSTIN (Jurnal Sistem dan Teknologi Informasi), 12(3), 584-591. https://doi.org/10.26418/justin.v12i3.80136

Anand, V., Khajuria, A., Pachauri, R. K., & Gupta, V. (2025). Optimized machine learning based comparative analysis of predictive models for classification of kidney tumors. Scientific Reports, 15(1), 1–13. https://doi.org/10.1038/s41598-025-15414-w

Ananda, I. K., Fanani, A. Z., Setiawan, D., & Wicaksono, D. F. (2024). Penerapan Random Oversampling dan Algoritma Boosting untuk Memprediksi Kualitas Buah Jeruk. Edumatic: Jurnal Pendidikan Informatika, 8(1), 282–289. https://doi.org/10.29408/edumatic.v8i1.25836

Anugrah, M. I., Zeniarja, J., & Setiawan, D. S. (2024). Peningkatan Performa Model Hard Voting Classifier dengan Teknik Oversampling ADASYN pada Penyakit Diabetes. Edumatic: Jurnal Pendidikan Informatika, 8(1), 290–299. https://doi.org/10.29408/edumatic.v8i1.25838

Ariawan, A. (2024). Optimasi Prediksi Gagal Jantung dengan Teknik Ensemble Bagging Pada Neural Network. Kesatria: Jurnal Penerapan Sistem Informasi (Komputer dan Manajemen), 5(3), 1000-1009.

Babiloni-Chust, I., Dos Santos, R. S., Medina-Gali, R. M., Perez-Serna, A. A., Encinar, J. A., Martinez-Pinna, J., ... & Nadal, A. (2022). G protein-coupled estrogen receptor activation by bisphenol-A disrupts the protection from apoptosis conferred by the estrogen receptors ERα and ERβ in pancreatic beta cells. Environment international, 164, 107250. https://doi.org/10.1016/j.envint.2022.107250

Chai, S. S., Goh, K. L., Cheah, W. L., Chang, Y. H. R., & Ng, G. W. (2022). Hypertension prediction in adolescents using anthropometric measurements: do machine learning models perform equally well?. Applied Sciences, 12(3), 1600. https://doi.org/10.3390/app12031600

Haque, R., Wang, C., & Pala, N. (2025). An Ensemble-Based AI Approach for Continuous Blood Pressure Estimation in Health Monitoring Applications. Sensors, 25(15), 4574. https://doi.org/10.3390/s25154574

Hwang, S. H., Lee, H., Lee, J. H., Lee, M., Koyanagi, A., Smith, L., ... & Lee, J. (2024). Machine Learning–Based Prediction for Incident Hypertension Based on Regular Health Checkup Data: Derivation and Validation in 2 Independent Nationwide Cohorts in South Korea and Japan. Journal of Medical Internet Research, 26, e52794. https://doi.org/10.3390/app12031600

Ji, W., Zhang, Y., Cheng, Y., Wang, Y., & Zhou, Y. (2022). Development and validation of prediction models for hypertension risks: A cross-sectional study based on 4,287,407 participants. Frontiers in Cardiovascular Medicine, 9, 928948. https://doi.org/10.3389/fcvm.2022.928948

Iskhak, Z. M., Darmanto, E., & Muzid, S. (2025). Integrasi Sistem Pakar Forward Chaining dan Decision Tree untuk Deteksi Hama berbasis WhatsApp. Edumatic: Jurnal Pendidikan Informatika, 9(2), 560-569. https://doi.org/10.29408/edumatic.v9i2.31189

Khan, A. A., Chaudhari, O., & Chandra, R. (2024). A review of ensemble learning and data augmentation models for class imbalanced problems: Combination, implementation and evaluation. Expert Systems with Applications, 244, 122778. https://doi.org/10.1016/j.eswa.2023.122778

Kim, H., Hwang, S., Lee, S., & Kim, Y. (2022). Classification and prediction on hypertension with blood pressure determinants in a deep learning algorithm. International journal of environmental research and public health, 19(22), 15301. https://doi.org/10.3390/ijerph192215301

Kurniawan, R., Utomo, B., Siregar, K. N., Ramli, K., Besral, Suhatril, R. J., & Pratiwi, O. A. (2023). Hypertension prediction using machine learning algorithm among Indonesian adults. IAES International Journal of Artificial Intelligence, 12(2), 776–784. https://doi.org/10.11591/ijai.v12.i2.pp776-784

Masacgi, G. N., & Rohman, M. S. (2023). Optimasi Model Algoritma Klasifikasi menggunakan Metode Bagging pada Stunting Balita. Edumatic: Jurnal Pendidikan Informatika, 7(2), 455–464. https://doi.org/10.29408/edumatic.v7i2.23812

Muflih, M., & Halimizami, H. (2021). Hubungan Tingkat Pengetahuan Dan Gaya Hidup Dengan Upaya Pencegahan Stroke Pada Penderita Hipertensi Di Puskesmas Desa Binjai Medan. Indonesian Trust Health Journal, 4(2), 463–471. https://doi.org/10.37104/ithj.v4i2.79

Muslim, Z., Saktia, L., & Pudiarifanti, N. (2025). The level of compliance in the use of drugs based on the antihypertensive and the patient’s classification of hypertension: A cross-sectional study. Riset Informasi Kesehatan, 14(2), 240. https://doi.org/10.30644/rik.v14i2.1001

Norhasanah, N., Susanti, N., & Normila, N. (2024). The Pengaruh edukasi gizi seimbang dalam mencegah obesitas terhadap pengetahuan dan sikap remaja. Jurnal Ilmu Kesehatan Bhakti Husada: Health Sciences Journal, 15(02), 461-472. https://doi.org/10.34305/jikbh.v15i02.1170

Pramudita, R., Muis, S., Safitri, N., & Shafirawati, F. (2024). Optimasi Algoritma Machine Learning Menggunakan Teknik Bagging Pada Klasifikasi Diagnosis Kanker Payudara. Tematik, 11(1), 128–134. https://doi.org/10.38204/tematik.v11i1.1928

Rafidah, A. R., Nurmalasari, M., Hosizah, H., & Larasati, D. N. (2024). Penerapan Decision Tree dan Neural Network untuk Prediksi Severity Level Pada Kasus Hipertensi di RSUD Khidmat Sehat Afiat (KISA) Depok. J-REMI : Jurnal Rekam Medik Dan Informasi Kesehatan, 6(1), 9–18. https://doi.org/10.25047/j-remi.v6i1.4963

Sifat, I. K., & Kibria, M. K. (2024). Optimizing hypertension prediction using ensemble learning approaches. PLoS One, 19(12), e0315865. https://doi.org/10.1371/journal.pone.0315865

Xi, Y., Wang, H., & Sun, N. (2022). Machine learning outperforms traditional logistic regression and offers new possibilities for cardiovascular risk prediction: A study involving 143,043 Chinese patients with hypertension. Frontiers in cardiovascular medicine, 9, 1025705. https://doi.org/10.3389/fcvm.2022.1025705

Downloads

Published

2025-12-06

How to Cite

Dewi, A. D. K., & Utomo, D. W. (2025). Optimasi Decision Tree menggunakan Pendekatan Ensemble Bagging untuk Klasifikasi Klinis Hipertensi. Edumatic: Jurnal Pendidikan Informatika, 9(3), 738–747. https://doi.org/10.29408/edumatic.v9i3.32400