Integrasi Sistem IoT untuk Pemantauan Cuaca Real-Time dan Prediksi Curah Hujan berbasis LSTM
DOI:
https://doi.org/10.29408/edumatic.v9i3.32425Keywords:
esp32, iot, lstm, weather monitoring, rainfall predictionAbstract
The inaccuracy of non-real-time macro-regional weather forecasts creates an information gap for MSME actors in the agricultural sector who need updates on actual weather conditions at their business locations. This study aims to develop a real-time weather monitoring system based on ESP32 and an LSTM rainfall prediction model, the results of which can be accessed via a web interface by MSME actors such as farmers. The system was developed using an ESP32 microcontroller, DHT22 sensor, and Hall-effect 3144, with an LSTM model trained using historical BMKG data and field data. Our findings show that the system is capable of monitoring weather conditions in real time while generating microspatial rainfall predictions through full integration between IoT devices and the LSTM model. Test results show stable system performance with a transmission delay of 5 seconds, an initial fetch latency of 48 ms, and prediction performance RMSE of 17.05 mm, MAE of 12.40 mm, and F1-score of 0.175, which is adequate for detecting extreme rainfall intensity. These findings demonstrate the potential for developing an affordable, easily replicable, and adaptable microspatial weather forecasting system to support early warning systems or smart irrigation in agricultural areas.
References
Abbass, K., Qasim, M. Z., Song, H., Murshed, M., Mahmood, H., & Younis, I. (2022). A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environmental Science and Pollution Research, 29(28), 42539–42559. https://doi.org/10.1007/s11356-022-19718-6
Appelt, J. L., Saphangthong, T., Malek, Ž., Verburg, P. H., & van Vliet, J. (2023). Climate change impacts on tree crop suitability in Southeast Asia. Regional Environmental Change, 23(3), 1–14. https://doi.org/10.1007/s10113-023-02111-5
Azizah, F., Suwarsito, S., & Sarjanti, E. (2021). Pengaruh Pola Curah Hujan Terhadap Produktivitas Padi di Kecamatan Bukateja Kabupaten Purbalingga. Sainteks, 18(1), 1–7. https://doi.org/10.30595/sainteks.v18i1.10567
Camps-Valls, G., Fernández-Torres, M. Á., Cohrs, K. H., Höhl, A., Castelletti, A., Pacal, A., Robin, C., Martinuzzi, F., Papoutsis, I., Prapas, I., Pérez-Aracil, J., Weigel, K., Gonzalez-Calabuig, M., Reichstein, M., Rabel, M., Giuliani, M., Mahecha, M. D., Popescu, O. I., Pellicer-Valero, O. J., … Williams, T. (2025). Artificial intelligence for modeling and understanding extreme weather and climate events. Nature Communications, 16(1), 1–14. https://doi.org/10.1038/s41467-025-56573-8
Firdaus, R. F., & Paputungan, I. V. (2022). Prediksi Curah Hujan di Kota Bandung Menggunakan Metode Long Short Term Memory. Jurnal Penelitian Inovatif, 2(3), 453–460. https://doi.org/10.54082/jupin.99
Fitriati, U., Rusmayadi, G., Hatta, G. M., & Anggraini, D. (2025). Extreme Climate Change, Rainfall and Temperature in South Kalimantan Province, Indonesia. Journal of Lifestyle and SDGs Review, 5(4), 1–21. https://doi.org/10.47172/2965-730x.sdgsreview.v5.n04.pe06136
Fudhlatina, D., & Budiman, F. (2025). Peningkatan Akurasi Prediksi Curah Hujan menggunakan Gradient Boosting dan CatBoost dengan Pendekatan Voting Classifier. Edumatic: Jurnal Pendidikan Informatika, 9(1), 51–59. https://doi.org/10.29408/edumatic.v9i1.28988
Hasan, M. W. (2023). Building an IoT temperature and humidity forecasting model based on long short-term memory (LSTM) with improved whale optimization algorithm. Memories-Materials, Devices, Circuits and Systems, 6(3), 1–5. https://doi.org/https://doi.org/10.1016/j.memori.2023.100086
Hidayatulloh, S., & Aryanto, J. (2023). Sistem Pengendalian Jemuran Otomatis berbasis IoT dengan Logika Fuzzy untuk Pengkondisian Cuaca. Edumatic: Jurnal Pendidikan Informatika, 7(2), 287–296. https://doi.org/10.29408/edumatic.v7i2.21515
Ihsan, T., & Derosya, V. (2024). Tinjauan Strategi Pengemasan Buah dan Sayur dalam Memerangi Food Loss dalam Rantai Pasokan Pascapanen di Indonesia. Jurnal Ilmu Lingkungan, 22(4), 1078–1087. https://doi.org/10.14710/jil.22.4.1078-1087
Islam, A. P., & Azmi, M. (2022). Internet Of Things Untuk Informasi Cuaca Menggunakan Node Mcu. TEKNIMEDIA: Teknologi Informasi Dan Multimedia, 3(1), 17–22. https://doi.org/10.46764/teknimedia.v3i1.60
Kalaany, C. M. Al, Kimaita, H. N., Abdelmoneim, A. A., Khadra, R., Derardja, B., & Dragonetti, G. (2025). The Potential of Low-Cost IoT-Enabled Agrometeorological Stations: A Systematic Review. Sensors, 25(19), 1–21. https://doi.org/10.3390/s25196020
Kania, R., Gunawan, W., Solihati, T. I., Hidayanti, N., & Miftach, A. (2024). Sistem Monitoring Deteksi Cuaca Berbasis Internet Of Things (IoT). Jurnal Sistem Informasi Dan Informatika (Simika), 7(2), 153–163. https://doi.org/10.47080/simika.v7i2.3323
Miller, T., Mikiciuk, G., Durlik, I., Mikiciuk, M., Łobodzińska, A., & Śnieg, M. (2025). The IoT and AI in Agriculture: The Time Is Now-A Systematic Review of Smart Sensing Technologies. Sensors (Basel, Switzerland), 25(12), 1–32. https://doi.org/10.3390/s25123583
Miller, T., Mikiciuk, G., Durlik, I., Mikiciuk, M., Łobodzińska, A., & Śnieg, M. (2025). The IoT and AI in Agriculture: The Time Is Now-A Systematic Review of Smart Sensing Technologies. Sensors (Basel, Switzerland), 25(12), 1–32. https://doi.org/10.3390/s25123583
Mirzabaev, A., Bezner Kerr, R., Hasegawa, T., Pradhan, P., Wreford, A., Cristina Tirado von der Pahlen, M., & Gurney-Smith, H. (2023). Severe climate change risks to food security and nutrition. Climate Risk Management, 39(1), 1–10. https://doi.org/https://doi.org/10.1016/j.crm.2022.100473
Nath, B., Chen, G., O’Sullivan, C. M., & Zare, D. (2024). Research and Technologies to Reduce Grain Postharvest Losses: A Review. Foods, 13(12), 1–26. https://doi.org/10.3390/foods13121875
Nithyashri, J., Poluru, R. K., Balakrishnan, S., Ashok Kumar, M., Prabu, P., & Nandhini, S. (2023). IOT based prediction of rainfall forecast in coastal regions using deep reinforcement model. Measurement: Sensors, 29(5), 1–5. https://doi.org/https://doi.org/10.1016/j.measen.2023.100877
Nurwarsito, H., & Adaby, R. W. (2024). Pengembangan Internet Of Things (IOT) Dalam Perekaman Data Iklim Mikro Dengan Platform Thingsboard. Jurnal Teknologi Informasi Dan Ilmu Komputer, 11(6), 1385–1398. https://doi.org/10.25126/jtiik.2024118987
Phuong, T. T., Vien, T. D., Son, C. T., Thuy, D. T., & Greiving, S. (2024). Impact of Climate Change on Agricultural Production and Food Security: A Case Study in the Mekong River Delta of Vietnam. Sustainability (Switzerland), 16(17), 1–16. https://doi.org/10.3390/su16177776
Pongsapan, A. S., & Allo, R. (2022). Karakteristik Pengering Surya (Solar Dryer) Dengan Turbin Ventilator. Jurnal Teknik AMATA, 3(2), 1–9. https://doi.org/10.55334/jtam.v3i2.297
Ponnoprat, D. (2021). Short-term daily precipitation forecasting with seasonally-integrated autoencoder. Applied Soft Computing, 102(4), 1–9. https://doi.org/https://doi.org/10.1016/j.asoc.2021.107083
Saleem, A., Anwar, S., Nawaz, T., Fahad, S., Saud, S., Ur Rahman, T., Khan, M. N. R., & Nawaz, T. (2025). Securing a sustainable future: the climate change threat to agriculture, food security, and sustainable development goals. Journal of Umm Al-Qura University for Applied Sciences, 11(3), 595–611. https://doi.org/10.1007/s43994-024-00177-3
Sun, X., Zhong, X., Xu, X., Huang, Y., Li, H., Neelin, J. D., Chen, D., Feng, J., Han, W., Wu, L., & Qi, Y. (2025). A data-to-forecast machine learning system for global weather. Nature Communications, 16(1), 1–13. https://doi.org/10.1038/s41467-025-62024-1
Syahreza, A., Ningrum, N. K., & Syahrazy, M. A. (2024). Perbandingan Kinerja Model Prediksi Cuaca: Random Forest, Support Vector Regression, dan XGBoost. Edumatic: Jurnal Pendidikan Informatika, 8(2), 526–534. https://doi.org/10.29408/edumatic.v8i2.27640
Vianita, E., & Tantyoko, H. (2025). A Comparative Study of Machine Learning Models for Short-Term Load Forecasting. Jurnal Masyarakat Informatika, 16(1), 93–103. https://doi.org/10.14710/jmasif.16.1.73130
Wu, Y., Meng, X., Zhang, J., He, Y., Romo, J. A., Dong, Y., & Lu, D. (2024). Effective LSTMs with seasonal-trend decomposition and adaptive learning and niching-based backtracking search algorithm for time series forecasting. Expert Systems with Applications, 236(12), 1–15. https://doi.org/https://doi.org/10.1016/j.eswa.2023.121202
Yuan, X., Li, S., Chen, J., Yu, H., Yang, T., Wang, C., Huang, S., Chen, H., & Ao, X. (2024). Impacts of Global Climate Change on Agricultural Production: A Comprehensive Review. Agronomy, 14(7), 1–19. https://doi.org/10.3390/agronomy14071360
Yusuf, M. M., Martanto, M., & Hayati, U. (2024). Analisis Pola Cuaca Extrem Menggunakan Long Short Term Memory Pada Wilayah Jawa Barat. JATI (Jurnal Mahasiswa Teknik Informatika), 7(6), 3781–3788. https://doi.org/10.36040/jati.v7i6.8288
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Dimas Yudistira, Muhammad Ikhsan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
All articles in this journal are the sole responsibility of the authors. Edumatic: Jurnal Pendidikan Informatika can be accessed free of charge, in accordance with the Creative Commons license used.

This work is licensed under a Lisensi a Creative Commons Attribution-ShareAlike 4.0 International License.


