Model Pembelajaran Mesin untuk Deteksi Gangguan Tidur: Perbandingan Logistic Regression dan Random Forest
DOI:
https://doi.org/10.29408/edumatic.v9i3.32491Keywords:
logistic regression, random forest, classification, sleep disorders, smoteAbstract
Sleep disorders must be classified accurately to enable early detection and proper treatment. However, previous studies remain limited because they often rely on a single method or suffer from imbalanced datasets. This study aims to compare the performance of Logistic Regression and Random Forest in classifying sleep disorders using the Sleep Health dataset from Kaggle. The dataset consists of 374 samples and 12 variables categorized into three classes: Insomnia, No Disorder, and Sleep Apnea. The data processing steps include cleaning, splitting the dataset, and balancing the classes using the SMOTE technique to address distribution imbalance. Model evaluation was conducted using Accuracy, precision, recall, F1-score, and confusion matrix. Our findings show that Logistic Regression achieved an Accuracy of 96%, while Random Forest obtained 92%. Scientifically, Logistic Regression demonstrated greater stability on balanced data, whereas Random Forest was more sensitive to variations introduced by oversampling. Model analysis revealed that frequency of nighttime awakenings, total sleep duration, perceived sleep quality, and symptoms such as snoring or breathing pauses were the most influential factors in detecting sleep disorders. These results indicate that simpler models can outperform more complex ones after class balancing, a finding that has not been widely reported in the existing sleep health literature.
References
A’la, F. Y. (2025). Optimasi Klasifikasi Sentimen Ulasan Game Berbahasa Indonesia: IndoBERT dan SMOTE untuk Menangani Ketidakseimbangan Kelas. Edumatic: Jurnal Pendidikan Informatika, 9(1), 256-265. https://doi.org/10.29408/edumatic.v9i1.29666
Andira, A. D., Usman, A. M., & Wowor, T. J. F. (2022). Hubungan Penggunaan Gadget Terhadap Kualitas Tidur Pada Mahasiswa Keperawatan di Universitas Nasional. Jurnal Promotif Preventif, 4(2), 51–56. https://doi.org/10.47650/jpp.v4i2.354
Ariyanto, D., Sofro, A. Y., Hanifah, A. I. N., Prihanto, J. B., Maulana, D. A., & Romadhonia, R. W. (2024). Logistic and probit regression modeling to predict the opportunities of diabetes in prospective athletes. BAREKENG: Jurnal Ilmu Matematika dan Terapan, 18(3), 1391-1402. https://doi.org/10.30598/barekengvol18iss3pp1391-1402
Astari, D. F., Chrisnanto, Y. H., & Melina, M. (2024). Klasifikasi Tingkat Stres Saat Tidur Menggunakan Algoritma Random Forest. JATI (Jurnal Mahasiswa Teknik Informatika), 7(5), 3676–3684. https://doi.org/10.36040/jati.v7i5.7750
Cahyani, O. N., & Budiman, F. (2025). Performa Logistic Regression dan Naive Bayes dalam Klasifikasi Berita Hoax di Indonesia. Edumatic: Jurnal Pendidikan Informatika, 9(1), 60–68. https://doi.org/10.29408/edumatic.v9i1.28987
Faradillah, F., Alie, M. F., & Rahmanda, R. (2024). Model Prediksi Gangguan Tidur berdasarkan Beberapa Faktor menggunakan Machine Learning. CESS (Journal of Computer Engineering, System and Science), 9(2), 504–517. https://doi.org/10.24114/cess.v9i2.61068
Haikal, F. M., Akrom, M., & Trisnapradika, G. A. (2023). Perbandingan Algoritma Multilinear Regression dan Decision Tree Regressor dalam Memprediksi Efisiensi Penghambatan Korosi Piridazin. Edumatic: Jurnal Pendidikan Informatika, 7(2), 307-315. https://doi.org/10.29408/edumatic.v7i2.22127
Hartini, S., Nisa, K., & Herini, E. S. (2021). Faktor-Faktor yang Berhubungan dengan Masalah Tidur Remaja Selama Pandemi Covid-19. Sari Pediatri, 22(5), 311–317. https://doi.org/10.14238/sp22.5.2021.311-7
Hidayat, I. A. (2023). Classification of Sleep Disorders Using Random Forest on Sleep Health and Lifestyle Dataset. Journal of Dinda : Data Science, Information Technology, and Data Analytics, 3(2), 71–76. https://doi.org/10.20895/dinda.v3i2.1215
Hutagalung, N. A., Marni, E., & Erianti, S. (2022). Faktor-Faktor Yang Mempengaruhi Kualitas Tidur Pada Mahasiswa Tingkat Satu Program Studi Keperawatan STIKes Hang Tuah Pekanbaru. Jurnal Keperawatan Hang Tuah (Hang Tuah Nursing Journal), 2(1), 77–89. https://doi.org/10.25311/jkh.Vol2.Iss1.535
Irfannandhy, R., Handoko, L. B., & Ariyanto, N. (2024). Analisis Performa Model Random Forest dan CatBoost dengan Teknik SMOTE dalam Prediksi Risiko Diabetes. Edumatic: Jurnal Pendidikan Informatika, 8(2), 714-723. https://doi.org/10.29408/edumatic.v8i2.27990
Khasanah, N., Saputri, D. U. E., Aziz, F., & Hidayat, T. (2025). Studi Perbandingan Algoritma Random Forest dan K-Nearest Neighbors (KNN) dalam Klasifikasi Gangguan Tidur. Computer Science (CO-SCIENCE), 5(1), 17–25. https://doi.org/10.31294/coscience.v5i1.5522
Kivrak, M., Avci, U., Uzun, H., & Ardic, C. (2024). The Impact of the SMOTE Method on Machine Learning and Ensemble Learning Performance Results in Addressing Class Imbalance in Data Used for Predicting Total Testosterone Deficiency in Type 2 Diabetes Patients. Diagnostics, 14(23), 2–16. https://doi.org/10.3390/diagnostics14232634
Larasati, S. S. A., Dewi, E. N. K., Farhansyah, B. H., Bachtiar, F. A., & Pradana, F. (2024). Penerapan Decision Tree dan Random Forest dalam Deteksi Tingkat Stres Manusia Berdasarkan Kondisi Tidur. Jurnal Teknologi Informasi Dan Ilmu Komputer, 11(5), 1043–1050. https://doi.org/10.25126/jtiik.2024117993
Maulidah, M., & Hidayati, N. (2024). Prediksi Kesehatan Tidur Dan Gaya Hidup Menggunakan Machine Learning. CONTEN: Computer and Network Technology, 4(1), 81–86.
Monarisa, M., Indriani, S., & Suci, H. (2021). Tingkat Kecemasan dan Kualitas Tidur Petugas Kesehatan Pada Masa Pandemi Covid-19. JIK JURNAL ILMU KESEHATAN, 5(2), 268–274. https://doi.org/10.33757/jik.v5i2.439
Mufid, N. A., & Kismiantini, K. (2024). Analisis Kualitas Tidur Penduduk Usia Produktif di Indonesia dengan Model Regresi Logistik Ordinal. Indonesian Journal of Applied Statistics, 7(2), 98–111. https://doi.org/10.13057/ijas.v7i2.86659
Pangestu, A. G., Winarno, S., Nugraha, A., & Muttaqin, A. N. I. (2025). DiabTrack: Sistem Prediksi Dini Diabetes Melitus Tipe 2 berbasis Web menggunakan Algoritma K-Nearest Neighbors. Edumatic: Jurnal Pendidikan Informatika, 9(1), 284-293. https://doi.org/10.29408/edumatic.v9i1.29691
Rachmat, B. K., Suwarisman, A., Afriyanti, I., Wahyudi, A., & Saputra, D. D. (2023). Analisis Sentimen Complain dan Bukan Complain pada Twitter Telkomsel dengan SMOTE dan Naïve Bayes. Jurnal JTIK (Jurnal Teknologi Informasi Dan Komunikasi), 7(1), 106–113. https://doi.org/10.35870/jtik.v7i1.691
Rao, B. H., Srinadh, C. V., Prashanthi, Y. L., Karthik, I., & Kiran, T. P. (2025). Sleep Disorder Detection Using Machine Learning. International Journal for Research in Applied Science and Engineering Technology, 13(4), 3668–3671. https://doi.org/10.22214/ijraset.2025.68924
Rohmah, H. N. F. (2023). Pelatihan Teknik Peningkatan Kualitas Tidur Pada Kader Kesehatan Di Desa Bantarjaya. SELAPARANG: Jurnal Pengabdian Masyarakat Berkemajuan, 7(1), 414–421. https://doi.org/10.31764/jpmb.v7i1.13630
Ruriyanty.R, N. R., Subhannur Rahman, Mohtar, M. S., & Mohammad Basit. (2023). Hubungan Tingkat Stres Dengan Kualitas Tidur Mahasiswa Kesehatan Tingkat Akhir Di Universitas Sari Mulia. Jurnal Keperawatan Suaka Insan (JKSI), 8(2), 184–189. https://doi.org/10.51143/jksi.v8i2.493
Sahri, R. P., & Hasibuan, M. T. D. (2023). Hubungan Kualitas Tidur dengan Prestasi Belajar pada Mahasiswa. Jurnal Penelitian Perawat Profesional, 5(2), 473–480. https://doi.org/10.37287/jppp.v5i2.1459
Setyowati, A., Rahmayanti, D., & Agianto, A. (2023). “Sleep Hygiene” untuk Kesehatan Fisik dan Mental yang Berkualitas pada Masyarakat yang Tinggal di Area Lahan Basah. Jurnal Pengabdian ILUNG (Inovasi Lahan Basah Unggul, 3(Agustus), 137–145. https://doi.org/10.20527/ilung.v3i1
Syahreza, A., Ningrum, N. K., & Syahrazy, M. A. (2024). Perbandingan Kinerja Model Prediksi Cuaca: Random Forest, Support Vector Regression, dan XGBoost. Edumatic: Jurnal Pendidikan Informatika, 8(2), 526-534. https://doi.org/10.29408/edumatic.v8i2.27640
Triginandri, R., & Subhiyakto, E. R. (2024). Deteksi Dini Cacar Monyet menggunakan Convolutional Neural Network (CNN) dalam Aplikasi Mobile. Edumatic: Jurnal Pendidikan Informatika, 8(2), 516-525. https://doi.org/10.29408/edumatic.v8i2.27625
Wardani, I. A. K., & Tiastiningsih, N. N. (2023). Gangguan Tidur Pada Penderita Gangguan Afektif Bipolar. Jurnal Hasil Penelitian Dan Pengembangan (JHPP), 1(3), 177–183. https://doi.org/10.61116/jhpp.v1i3.158
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Berliano Kurniawan, Fikri Budiman

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
All articles in this journal are the sole responsibility of the authors. Edumatic: Jurnal Pendidikan Informatika can be accessed free of charge, in accordance with the Creative Commons license used.

This work is licensed under a Lisensi a Creative Commons Attribution-ShareAlike 4.0 International License.


