Augment During Training (ADT) pada DenseNet-121: Klasifikasi Tingkat Keparahan Retinopati Diabetik pada Citra Fundus
DOI:
https://doi.org/10.29408/edumatic.v9i3.32527Keywords:
adaptive augmentation, deep learning, densenet-121, class imbalance, diabetic retinopathyAbstract
Diabetic Retinopathy (DR) is a severe complication of diabetes mellitus and a leading cause of blindness among the working-age population. Manual diagnosis using fundus images is often subjective and inefficient for mass screening, while automated diagnosis faces challenges due to class imbalance, limiting model performance and generalization. This study aims to develop a DR severity classification model based on the DenseNet-121 architecture by introducing a dynamic augmentation strategy called Augment During Training (ADT). This strategy was evaluated and compared against three other approaches: Baseline, Oversampling Augmentation, and SMOTE. We used the APTOS 2019 Blindness Detection dataset, comprising 3,662 fundus images across five severity levels. The results showed that the model with ADT achieved an accuracy of 83.65% (95% CI: 81.53–85.77%), an F1-score of 83.12%, precision of 83.80%, and recall of 83.65%, outperforming the other three approaches by a margin of 3.27%. Class-wise analysis demonstrated that ADT effectively addressed data imbalance, yielding high performance in the No DR (0.98) and Moderate (0.77) classes, though improvements are still needed for minority classes such as Severe and Proliferative. This study provides a solid computational foundation for developing future early detection tools for Diabetic Retinopathy.
References
Aggarwal, R., Sounderajah, V., Martin, G., Ting, D. S. W., Karthikesalingam, A., King, D., Ashrafian, H., & Darzi, A. (2021). Diagnostic accuracy of deep learning in medical imaging: A systematic review and meta-analysis. Npj Digital Medicine, 4(1), 65. https://doi.org/10.1038/s41746-021-00438-z
Atwany, M. Z., Sahyoun, A. H., & Yaqub, M. (2022). Deep Learning Techniques for Diabetic Retinopathy Classification: A Survey. IEEE Access, 10, 28642–28655. https://doi.org/10.1109/ACCESS.2022.3157632
Benhamza, M., Dahlui, M., & Said, M. A. (2024). Determining direct, indirect healthcare and social costs for diabetic retinopathy management: A systematic review. BMC Ophthalmology, 24(1), 424. https://doi.org/10.1186/s12886-024-03665-6
Gangwar, A. K., & Ravi, V. (2021). Diabetic Retinopathy Detection Using Transfer Learning and Deep Learning. In V. Bhateja, S.-L. Peng, S. C. Satapathy, & Y.-D. Zhang (Eds.), Evolution in Computational Intelligence. (1176), 679–689. Springer Singapore. https://doi.org/10.1007/978-981-15-5788-0_64
Hao, R., Namdar, K., Liu, L., Haider, M. A., & Khalvati, F. (2021). A Comprehensive Study of Data Augmentation Strategies for Prostate Cancer Detection in Diffusion-Weighted MRI Using Convolutional Neural Networks. Journal of Digital Imaging, 34(4), 862–876. https://doi.org/10.1007/s10278-021-00478-7
Hasan, N., Bao, Y., Shawon, A., & Huang, Y. (2021). DenseNet Convolutional Neural Networks Application for Predicting COVID-19 Using CT Image. SN Computer Science, 2(5), 389. https://doi.org/10.1007/s42979-021-00782-7
Hu, A., Schmidt, M. H. H., & Heinig, N. (2024). Microglia in retinal angiogenesis and diabetic retinopathy. Angiogenesis, 27(3), 311–331. https://doi.org/10.1007/s10456-024-09911-1
Khan, M. B., Ahmad, M., Yaakob, S. B., Shahrior, R., Rashid, M. A., & Higa, H. (2023). Automated Diagnosis of Diabetic Retinopathy Using Deep Learning: On the Search of Segmented Retinal Blood Vessel Images for Better Performance. Bioengineering, 10(4), 413. https://doi.org/10.3390/bioengineering10040413
Kumar, S., Asiamah, P., Jolaoso, O., & Esiowu, U. (2025). Enhancing Image Classification with Augmentation: Data Augmentation Techniques for Improved Image Classification (No. arXiv:2502.18691). arXiv. https://doi.org/10.48550/arXiv.2502.18691
Luo, X., Zhang, B., Wang, W., Xu, Y., Lai, Z., Jin, X., & Zhang, D. (2022). A deep convolutional neural network for diabetic retinopathy detection via mining local and long-range dependence. CAAI Transactions on Intelligence Technology, 7(4), 701–713. https://doi.org/10.1049/cit2.12155
Mas’ud, R. A., & Junta, Z. (2024). Optimasi Convolutional Neural Networks untuk Deteksi Kanker Payudara menggunakan Arsitektur DenseNet. Edumatic: Jurnal Pendidikan Informatika, 8(1), 310–318. https://doi.org/10.29408/edumatic.v8i1.25883
Matharaarachchi, S., Domaratzki, M., & Muthukumarana, S. (2024). Enhancing SMOTE for imbalanced data with abnormal minority instances. Machine Learning with Applications, 18, 100597. https://doi.org/10.1016/j.mlwa.2024.100597
Prajnaparamita, I. (2025). Diabetic Retinopathy: A Growing Concern for Diabetes Patients in Indonesia. Journal Scientific of Mandalika (JSM), 6(4), 768–778.
Puteri, V., Lassie, N., & Huda, M. N. (2022). Gambaran Karakteristik Pasien Retinopati Diabetik yang Dilakukan Pembedahan Vitrektomi Di RSKM Padang Eye Center Tahun 2019-2020. Scientific Journal, 1(3), 177–191. https://doi.org/10.56260/sciena.v1i3.40
Santika, E. F. (2024). Indonesia’s Diabetes Prevalence Rises to 11.7% in 2023. Databoks. Retrieved November 17, 2025, from Indonesia’s Diabetes Prevalence Rises to 11.7% in 2023
Shaniaputri, T., Iskandar, E., & Fajriansyah, A. (2022). Prevalensi Retinopati Diabetik di Puskesmas di Bandung Raya Periode Januari 2019-Desember 2020. eJournal Kedokteran Indonesia, 10(1), 39–45. https://doi.org/10.23886/ejki.10.119.39-45
Song, B., Li, S., Sunny, S., Gurushanth, K., Mendonca, P., Mukhia, N., Patrick, S., Gurudath, S., Raghavan, S., Tsusennaro, I., Leivon, S. T., Kolur, T., Shetty, V., Bushan, V., Ramesh, R., Peterson, T., Pillai, V., Wilder-Smith, P., Sigamani, A., … Liang, R. (2021). Classification of imbalanced oral cancer image data from high-risk population. Journal of Biomedical Optics, 26(10). https://doi.org/10.1117/1.JBO.26.10.105001
Ullah, N., Mohmand, M. I., Ullah, K., Gismalla, M. S. M., Ali, L., Khan, S. U., & Ullah, N. (2022). Diabetic retinopathy detection using genetic algorithm-based CNN features and error correction output code SVM framework. Wireless Communications and Mobile Computing, 2022, Article ID 7095528. https://doi.org/10.1155/2022/7095528
Vishwanath, C. S., Divya, K. L., Vamsika, A., Murali, B. S., & Dinesh, B. (2024). Diabetic Retinopathy Classification by Enhanced Image Filtration Techniques Using Deep Learning. 2024 OPJU International Technology Conference (OTCON) on Smart Computing for Innovation and Advancement in Industry 4.0, 1–7. India: IEEE. https://doi.org/10.1109/OTCON60325.2024.10687473
Wahidin, M., Achadi, A., Besral, B., Kosen, S., Nadjib, M., Nurwahyuni, A., Ronoatmodjo, S., Rahajeng, E., Pane, M., & Kusuma, D. (2024). Projection of diabetes morbidity and mortality till 2045 in Indonesia based on risk factors and NCD prevention and control programs. Scientific Reports, 14(1), 5424. https://doi.org/10.1038/s41598-024-54563-2
Yang, Z., Tan, T.-E., Shao, Y., Wong, T. Y., & Li, X. (2022). Classification of diabetic retinopathy: Past, present and future. Frontiers in Endocrinology, 13, 1079217. https://doi.org/10.3389/fendo.2022.1079217
Yi, D., Baltov, P., Hua, Y., Philip, S., & Sharma, P. K. (2024). Compound Scaling Encoder-Decoder (CoSED) Network for Diabetic Retinopathy Related Bio-Marker Detection. IEEE Journal of Biomedical and Health Informatics, 28(4), 1959–1970. https://doi.org/10.1109/JBHI.2023.3313785
Zhao, P. Y., Bommakanti, N., Yu, G., Aaberg, M. T., Patel, T. P., & Paulus, Y. M. (2023). Deep learning for automated detection of neovascular leakage on ultra-widefield fluorescein angiography in diabetic retinopathy. Scientific Reports, 13(1), 9165. https://doi.org/10.1038/s41598-023-36327-6
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Willy Cahyadi, Daniel Martomanggolo Wonohadidjojo

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
All articles in this journal are the sole responsibility of the authors. Edumatic: Jurnal Pendidikan Informatika can be accessed free of charge, in accordance with the Creative Commons license used.

This work is licensed under a Lisensi a Creative Commons Attribution-ShareAlike 4.0 International License.


