Deteksi dan Klasifikasi Kematangan Pisang menggunakan YOLOv8 dan Model Hibrida MobileNetV2–KNN
DOI:
https://doi.org/10.29408/edumatic.v9i3.32597Keywords:
banana ripeness, image classification, k-nearest neighbor, mobilenetv2, yolov8Abstract
Banana ripeness is a key indicator of fruit quality, shelf life, and commercial value; however, manual assessment remains subjective and inconsistent, highlighting the need for an automated and objective classification system. This study aims to develop a high-accuracy and stable hybrid model for classifying banana ripeness levels and to implement it in a real-time image-based quality inspection system. This research is an experimental study combined with software development using the Waterfall model. The proposed method integrates YOLOv8 for object pre-filtering and banana detection, MobileNetV2 as a lightweight yet representative deep feature extractor, and K-Nearest Neighbor (KNN) as a Euclidean-distance-based classifier. A dataset of 13,478 images representing four ripeness categories was processed through detection, feature extraction, normalization, and classification stages. Performance evaluations using accuracy, precision, recall, F1-score, confusion matrix, and 5-fold cross-validation show that the model achieves an accuracy of 96.57% with balanced precision–recall values and low cross-validation variance, indicating strong stability and minimal overfitting. The main contributions of this study include the design of the YOLOv8–MobileNetV2–KNN hybrid architecture that overcomes the limitations of manually engineered features and pure CNN models, as well as the development of a GUI-based banana ripeness classification system suitable for real-time smart farming applications.
References
Adenugraha, S. P., Arinal, V., & Mulyana, D. I. (2022). Klasifikasi Kematangan Buah Pisang Ambon Menggunakan Metode Knn Dan Pca Berdasarkan Citra Rgb Dan Hsv. Jurnal Media Informatika Budidarma, 6(1), 9-17. https://doi.org/10.30865/mib.v6i1.3287
Amrozi, Y., Yuliati, D., Susilo, A., Novianto, N., & Ramadhan, R. (2022). Klasifikasi Jenis Buah Pisang Berdasarkan Citra Warna Dengan Metode Svm. Jurnal Sisfokom (Sistem Informasi Dan Komputer), 11(3), 394–399. https://doi.org/10.32736/sisfokom.v11i3.1502
Hanifah, A. I., & Hermawan, A. (2023). Klasifikasi Kematangan Pisang Menggunakan Metode Convolutional Neural Network. Komputika: Jurnal Sistem Komputer, 12(2), 49–56. https://doi.org/10.34010/komputika.v12i2.9999
Hazizah, C. Y., & Widiyaningtyas, T. (2024). Analisis Metode Collaborative Filtering Menggunakan Knn Dan Svd++ Untuk Rekomendasi Produk E-Commerce Tokopedia. Edumatic: Jurnal Pendidikan Informatika, 8(2), 595–604. https://doi.org/10.29408/edumatic.v8i2.27793
Huda, F., & Putra, M. P. K. (2023). Klasifikasi Jenis Buah Pisang Menggunakan Algoritma Convolutional Neural Network. Journal of Artificial Intelligence and Technology Information (JAITI), 1(3), 100-105. https://doi.org/10.58602/jaiti.v1i3.61
Indahyanti, U., Azizah, N. L., & Setiawan, H. (2022). Pendekatan Ensemble Learning Untuk Meningkatkan Akurasi Prediksi Kinerja Akademik Mahasiswa. Jurnal Sains Dan Informatika, 8(2). https://doi.org/10.34128/jsi.v8i2.459
Lee, J., Park, J., & Lee, Y. (2025). Toward Efficient Cancer Detection on Mobile Devices. IEEE Access, 13, 34613-34626. https://doi.org/10.1109/ACCESS.2025.3543838
Maula, A. I., Triyanto, W. A., & Setiaji, P. (2025). Sistem Klasifikasi Kematangan Apel Fuji Berdasarkan Warna Menggunakan Knn Untuk Sortasi Otomatis. Edumatic: Jurnal Pendidikan Informatika, 9(2), 589–598. https://doi.org/10.29408/edumatic.v9i2.31243
Merdiansah, R., Siska, S., & Ali Ridha, A. (2024). Analisis Sentimen Pengguna X Indonesia Terkait Kendaraan Listrik Menggunakan Indobert. Jurnal Ilmu Komputer Dan Sistem Informasi (Jikomsi), 7(1), 221–228. https://doi.org/10.55338/jikomsi.v7i1.2895
Navarro Ortiz, D. J., & Martinez Lopez, S. A. (2022). Automatic Identification of Banana Quality With Deep Neural Network Classification (Dnn). Ciencia Y Tecnología, 10, 37–56. https://doi.org/10.18682/cyt.vi22.4609
Putri, A., Purisky Redaputri, A., & Rinova, D. (2022). Pemanfaatan Limbah Kulit Pisang Sebagai Pupuk Menuju Ekonomi Sirkular (Umkm Olahan Pisang Di Indonesia). Jurnal Pengabdian Umkm, 1(2), 104–109. https://doi.org/10.36448/jpu.v1i2.20
Rifki Kosasih. (2021). Klasifikasi Tingkat Kematangan Pisang Berdasarkan Ekstraksi Fitur Tekstur Dan Algoritme Knn. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 10(4), 383–388. https://doi.org/10.22146/jnteti.v10i4.462
Rukiastiandari, S., Rohimah, L., Aprillia, A., Chodidjah, C., & Mutia, F. (2025). Model Hibrida K-Nearest Neighbors Berbasis Genethic Algorithm Untuk Prediksi Penyakit Ginjal Kronis. Infotek: Jurnal Informatika Dan Teknologi, 8(1), 44–55. https://doi.org/10.29408/jit.v8i1.27918
Sejuti, Z. A., & Islam, M. S. (2023). A Hybrid Cnn–Knn Approach for Identification of Covid-19 With 5-Fold Cross Validation. Sensors International, 4, 100229. https://doi.org/10.1016/j.sintl.2023.100229
Shahi, T. B., Sitaula, C., Neupane, A., & Guo, W. (2022). Fruit classification using attention-based MobileNetV2 for industrial applications. Plos one, 17(2), e0264586. https://doi.org/10.1371/journal.pone.0264586
Sharifonnasabi, F., Jhanjhi, N. Z., John, J., Obeidy, P., Band, S. S., Alinejad-Rokny, H., & Baz, M. (2022). Hybrid HCNN-KNN model enhances age estimation accuracy in orthopantomography. Frontiers in Public Health, 10, 879418. https://doi.org/10.3389/fpubh.2022.879418
Suhendri, S., & Kusrini, K. (2024). Systematic Literature Review: Klasifikasi Tingkat Kematangan Buah Pisang. G-Tech: Jurnal Teknologi Terapan, 8(4), 2379–2389. https://doi.org/10.70609/gtech.v8i4.5059
Wang, Q., Chen, D., Feng, W., Sun, L., & Yu, G. (2025). Enhancing Instance Segmentation In Agriculture: An Optimized Yolov8 Solution. Sensors, 25(17), 5506. https://doi.org/10.3390/s25175506
Wardhani, A. S., Anggraeny, F. T., & Rizki, A. M. (2024). Penerapan Model Hibrida Cnn-Knn Untuk Klasifikasi Penyakit Mata. Jati (Jurnal Mahasiswa Teknik Informatika), 8(3), 3662–3667. https://doi.org/10.36040/jati.v8i3.9774
Widyawati, I. E., Tuty, S., & Nuraiini, A. (2024). Tinjauan Sistematis Pemanfaatan Tanaman Pisang (Musa Paradisiaca L.) Wilayah Indonesia Sebagai Bahan Sediaan Kosmetik. Antigen : Jurnal Kesehatan Masyarakat Dan Ilmu Gizi, 2(3), 192–199. https://doi.org/10.57213/antigen.v2i3.334
Shahi, T. B., Sitaula, C., Neupane, A., & Guo, W. (2022). Fruit classification using attention-based MobileNetV2 for industrial applications. Plos one, 17(2), e0264586. https://doi.org/10.1371/journal.pone.0264586
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 M. Rinaldi Pratama, Joko Aryanto

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
All articles in this journal are the sole responsibility of the authors. Edumatic: Jurnal Pendidikan Informatika can be accessed free of charge, in accordance with the Creative Commons license used.

This work is licensed under a Lisensi a Creative Commons Attribution-ShareAlike 4.0 International License.


