Integrasi Naive Bayes dalam Sistem Pendukung Keputusan berbasis Web untuk Kelayakan Kredit Koperasi Simpan Pinjam

Authors

DOI:

https://doi.org/10.29408/edumatic.v9i3.32629

Keywords:

confidence score, creditworthiness, decision support system, naive bayes, savings and loan cooperative

Abstract

assessment, which is still manual and subjective. This study aims to develop a web-based Decision Support System (DSS) using the Naive Bayes algorithm that not only validates the model but also integrates it into an operational system that can be used immediately. The research method used is development using the waterfall model with analysis, design, implementation and testing. The analysis was conducted by applying the Naive Bayes algorithm to generate confidence scores to improve prediction transparency and estimate monthly instalments to assess the repayment ability of prospective borrowers. The dataset included 6,883 historical loan data from 714 members with nine classification features, analysed using the Naive Bayes algorithm and validated using the k-fold cross-validation technique. Results The Naive Bayes classification model achieved 93% accuracy, 0.96 AUC, 94% precision, 96% recall, and a cross-validation score of 0.921 (±0.035). System testing showed that this web-based system functioned well without any errors. In addition, the average response time of this system was 1.95 seconds per input. The implementation of this web-based system successfully overcomes subjective assessment problems, facilitates real-time objective decision-making, and improves transparency and accountability in credit risk management at KSP Tepian Taduh.

References

Afandi, A., Agtriadi, H. B., Luqman, L., & Susanti, M. (2024). Advanced credit scoring with Naive Bayes algorithm: Improving accuracy and reliability in financial risk assessment. Jurnal E-Komtek (Elektro-Komputer-Teknik), 8(2), 399–409. https://doi.org/10.37339/e-komtek.v8i2.2160

Alexander, L., & Pratama, A. R. (2024). Peran strategis Koperasi Simpan Pinjam Sube Huter Nita dalam mendorong pertumbuhan ekonomi UMKM: Suatu kajian kasus. Jurnal Bisnis Kreatif dan Inovatif (JUBIKIN), 1(1), 48–61. https://doi.org/10.61132/jubikin.v1i1.15

Ardiyanti, W. D., Sape, B., Matasik, A. L., & Ramba, D. (2022). Analisis tingkat kesehatan Koperasi Simpan Pinjam Torganda II Rantelemo Kabupaten Tana Toraja. Jurnal Ekonomi, Bisnis dan Terapan (JESIT), 3(2), 183–200. https://doi.org/10.47178/t5gr2x62

Binaluyo, J. P., Agustin, N. B., & Santos, A. R. (2025). Microfinance institutions and services: Consumer perspectives and the path to standardized guidelines. Risk Governance and Control, 15(2), 80–91. https://doi.org/10.22495/rgcv15i2p7

Depari, D. H., Widiastiwi, Y., Santoni, M. M., & Universitas Pembangunan Nasional Veteran. (2022). Perbandingan model Decision Tree, Naive Bayes dan Random Forest untuk prediksi klasifikasi penyakit jantung. Jurnal Informatik, 18(3), 239–248. https://doi.org/10.52958/iftk.v18i3.4694

Ghazi, M. G. B. M., Lee, L. C., Samsudin, A. S., & Sino, H. (2023). Comparison of Decision Tree and Naïve Bayes algorithms in detecting trace residue of gasoline based on gas chromatography–mass spectrometry data. Forensic Sciences Research, 1–7. https://doi.org/10.1093/fsr/owad031

Habibulloh, W., & Topiq, S. (2021). Klasifikasi kelayakan kredit menggunakan algoritma Naive Bayes pada KSP Mekar Jaya Maleber. Jurnal Responsif, 3(1), 92–99. https://doi.org/10.51977/jti.v3i1.440

Hia, M. R. (2024). Analisis faktor-faktor penyebab kredit macet pada CU Dosnitahi Pinangsori Kupa Mandrehe Kabupaten Nias Barat. Jurnal Ilmiah Mahasiswa Nias Selatan, 7(2), 183–194. https://doi.org/10.57094/jim.v7i2.1233

Jannah, A. M., Habibi, A., & Basuki, B. M. (2025). Implementasi metode Naïve Bayes classifier pada machine learning untuk sistem alternatif credit scoring. Science Electro, 19(1), 17–24.

Kabir, S., Safin, S. I., Tanjin, M., Akter, H., Ghose, R., & Pathak, A. (2024). Predicting loan repayment reliability in cooperative societies using Naive Bayes classifier: A data mining approach for risk mitigation and decision support. International Journal of Computer Applications, 186(36), 16–23. https://doi.org/10.5120/ijca2024923937

Manuaba, P. B. I., Irmayani, D. W., & Sani, K. F. (2024). Peran Koperasi Simpan Pinjam dalam mensejahterakan anggota pada KSP Duta Sejahtera. EKOMA: Jurnal Ekonomi, Manajemen, Akuntansi, 3(3), 381–395.

Mendrofa, J., Telambanua, A., & Zebua, E. (2023). Analisis kredit macet pada Koperasi Simpan Pinjam CU Dosnitahi Pinangsori wilayah Nias kantor unit pelayanan anggota. Jurnal Suluh Pendidikan (JSP), 11(2), 238–244. https://doi.org/10.36655/jsp.v11i2.1251

Nallakaruppan, M. K., Chaturvedi, H., Grover, V., Balusamy, B., Jaraut, P., Bahadur, J., Meena, V. P., & Hameed, I. A. (2024). Credit risk assessment and financial decision support using explainable artificial intelligence. Risks, 12(164), 1–18. https://doi.org/10.3390/risks12100164

Ningsih, E. S., Syafwan, H., & Ihsan, M. (2023). MOORA: Metode sistem pendukung keputusan untuk menentukan kelayakan peminjaman modal dana bergulir. Edumatic, 7(1), 49–58. https://doi.org/10.29408/edumatic.v7i1

Noriega, J. P., Rivera, L. A., & Herrera, J. A. (2023). Machine learning for credit risk prediction: A systematic literature review. Data, 8(169), 1–17. https://doi.org/10.3390/data8110169

Nurjanah, I., Karaman, J., Widaningrum, I., Mustikasari, D., & Sucipto, S. (2023). Penggunaan algoritma Naïve Bayes untuk menentukan pemberian kredit pada koperasi desa. Explorer Journal of Computer Science and Information Technology, 3(2), 77–87. https://doi.org/10.47065/explorer.v3i2.766

Patrianingsih, N. K. W., & Sugianta, I. K. A. (2024). Analisis kelayakan kredit Koperasi Mitra Tani Mandiri dengan algoritma Naïve Bayes. ZONAsi: Jurnal Sistem Informasi, 6(2), 298–307. https://doi.org/10.31849/zn.v6i2.19804

Prayoga, R. A. S., Basatha, R., Akbar, M. S., Elfaiz, E. A., & Putra, C. D. (2025). Application of Naïve Bayes method for student performance classification. Sistemasi: Jurnal Sistem Informasi, 14(2), 536–544. https://doi.org/10.32520/stmsi.v14i2.4852

Rahmawati, P., Larasati, A., & Marsono, M. (2022). Pengembangan model persetujuan kredit nasabah bank dengan algoritma klasifikasi Naïve Bayes, Decision Tree, dan Artificial Neural Network. J@ti Undip: Jurnal Teknik Industri, 17(1), 1–12. https://doi.org/10.14710/jati.1.1.1-12

Suarpurningsih, N. K. A., Utami, N. W., & Estiyanti, N. M. (2022). Klasifikasi penentuan kelayakan pemberian kredit menggunakan metode Naive Bayes classifier (Kasus: Koperasi Simpan Pinjam Artha Segara). Jurnal Sains Komputer & Informatika (J-SAKTI), 6(1), 391–404.

Sudrajat, A., Mulyani, N., & Marpaung, N. (2022). Sistem pendukung keputusan penentuan kelayakan penangguhan kredit nasabah menggunakan Naïve Bayes. Edumatic: Jurnal Pendidikan Informatika, 6(2), 205–214. https://doi.org/10.29408/edumatic.v6i2.6298

Suryani, I. (2023). Comparison of Decision Tree, Naive Bayes and Random Forest algorithm to get the best performance of algorithm for customer credit classification. Jurnal Riset Informatika, 6(1), 167–174.

Tanza, A., & Utari, D. T. (2022). Comparison of the Naïve Bayes classifier and Decision Tree J48 for credit classification of bank customers. EKSAKTA Journal of Sciences and Data Analysis, 3(2), 70–77. https://doi.org/10.20885/EKSAKTA.vol3.iss2.art2

Triayudi, A., & Sumiati. (2022). Implementasi klasifikasi data mining untuk penentuan kelayakan pemberian kredit dengan menggunakan algoritma Naïve Bayes. Jurnal Sistem Komputer dan Informatika (JSON), 4(1), 240–244.

Wilujeng, D. T., Fatekurohman, M., & Tirta, I. M. (2023). Analisis risiko kredit perbankan menggunakan algoritma K-nearest neighbor dan nearest weighted K-nearest neighbor. Indonesian Journal of Applied Statistics, 5(2), 142–148. https://doi.org/10.13057/ijas.v5i2.58426

Downloads

Published

2025-12-09

How to Cite

Yusefin, V. Y., & Suhirman, S. (2025). Integrasi Naive Bayes dalam Sistem Pendukung Keputusan berbasis Web untuk Kelayakan Kredit Koperasi Simpan Pinjam . Edumatic: Jurnal Pendidikan Informatika, 9(3), 875–884. https://doi.org/10.29408/edumatic.v9i3.32629