Sistem Rekomendasi Program Studi berbasis K-Means Clustering menggunakan Asesmen Komprehensif dan Nilai Akademik

Authors

DOI:

https://doi.org/10.29408/edumatic.v9i3.32630

Keywords:

educational data mining, k-means clustering, multi-domain assessment, study program selection, recommendation system

Abstract

The high level of inaccuracy in choosing study programmes in Indonesia demonstrates the need for an assessment tool that can map students' potential holistically. This study aims to develop a Dream Major Recommendation System (SRJI) based on K-Means Clustering that integrates six semesters of academic grades and four non-academic assessments to help students at SMAN 3 Batang Hari choose study programmes according to their multidimensional potential. This study uses an applied quantitative design with a Prototype Model through the stages of needs identification, K-Means prototype development, and iterative testing. Data from 152 students were processed using median imputation, Isolation Forest, normalization, and Principal Component Analysis (PCA), resulting in 123 valid datasets clustered using Euclidean distance. The study resulted in a study program recommendation system featuring three optimal clusters with a Silhouette Score of 0.6164 and a Davies–Bouldin Index (DBI) of 0.5684. The analysis identified Cluster 0 (n=42, Social Science 64%, mean score 75.6) with a social-enterprising pattern, Cluster 1 (n=58, Natural Science 72%, mean score 87.5) as an investigative-realistic type, and Cluster 2 (n=35, balanced distribution, mean score 81.2) with realistic-conventional characteristics. Testing results demonstrated an 80% recommendation suitability rate based on validation by Guidance and Counseling teachers. This study contributes an Integrated Multidimensional Student Profiling model that expands the educational data mining literature and supports objective, data-driven decision-making in study program selection.

References

Aisyiah, J., Risnasari, M., & Ni’mah, A. T. (2023). Sistem rekomendasi program studi menggunakan metode hybrid recommendation (studi kasus: MAN Sumenep). Journal of Education and Informatics, 4(1), 1–10. https://doi.org/10.30864/eksplora.v12i1.992

Arifin, I., Primayasa, W., & Baharsyah, M. Y. (2020). Pengaruh salah pilih jurusan terhadap rasa putus asa mahasiswa Teknik Informatika. Nathiqiyyah Jurnal Psikologi Islam, 3(1), 1-5. https://doi.org/10.46781/nathiqiyyah.v3i1.76

Basalamah, A., & Setyadi, R. (2023). Penerapan algoritma K-Means clustering pada tingkat penyelesaian pendidikan di Provinsi Indonesia. Jurnal Informatika dan Teknologi Komputer (J-ICOM), 4(2), 114-121. https://doi.org/10.55377/j-icom.v4i2.7893

Darsono, V., Amroni, & Andrianti, A. (2022). Penerapan data mining algoritma k-means untuk rekomendasi pemilihan bidang studi perguruan tinggi pada siswa SMKN 1 Kota Jambi. Jurnal Informatika Dan Rekayasa Komputer(JAKAKOM), 2(2), 161–171. https://doi.org/10.33998/jakakom.2022.2.2.80

Diana, D., Guntur, I., Roebianto, A., & Christy, C. (2023). Choosing the Wrong Major: what is the profile of students who feel they have chosen the wrong major?. Jurnal Psikologi Pendidikan dan Konseling: Jurnal Kajian Psikologi Pendidikan dan Bimbingan Konseling (JPPK), 9(2), 77-85. https://doi.org/10.26858/jppk.v9i2.45753

Eirlangga, Y. S., & Syaputra, A. E. (2022). Analisis pengelompokan data nilai siswa untuk menentukan siswa berprestasi menggunakan metode clustering k-means. Jurnal Informasi Dan Teknologi, 4(3), 160–165. https://doi.org/10.37034/jidt.v4i3.235

Hidayat, R. (2022). Pemanfaatan data mining untuk melihat minat siswa setelah menyelesaikan pendidikan sekolah menengah atas (SMA) dengan algoritma k-means clustering. Technology and Informatics Insight Journal, 1(2), 136–151. https://doi.org/10.32639/tiij.v1i2.220

Kao, S., Chea, P., & Song, S. (2023). Upper secondary school tracking and major choices in higher education : to switch or not to switch. Educational Research for Policy and Practice, 23(0123456789), 89–113. https://doi.org/10.1007/s10671-023-09356- 1

Karmanita, D., & Hendrik, B. (2023). Penerapan metode clustering dengan algoritma k-means pada pengelompokkan peminatan mata kuliah. Jurnal Ilmiah Dan Karya Mahasiswa, 1(6), 1–10. https://doi.org/10.54066/jikma.v1i6.1028

Khoirunnisa, C. V., & Arkhiansyah, Y. (2024). Implementasi algoritma mechine learning untuk rekomendasi program studi bagi siswa SMA (Studi Kasus : Institut Informatika dan Bisnis Darmajaya). JATI (Jurnal Mahasiswa Teknik Informatika), 8(5), 10102–10108. https://doi.org/10.36040/jati.v8i5.10866

Kolne, M. A., Kelen, Y. P. K., & Ullu, H. H. (2025). Analisis kelayakan pemilihan jurusan siswa- siswi SMA/sederajat di era merdeka belajar menggunakan algoritma naïve bayes. Jurnal Sistem Informasi, 7(1), 149–161.

Lubis, A. S., & Sriani. (2025). Sistem pendukung keputusan dalam menentukan jurusan siswa di sekolah menengah menggunakan metode fuzzy tahani. Edumatic : Jurnal Pendidikan Informatika, 9(2), 543–551. https://doi.org/10.29408/edumatic.v9i2.30722

Ramadania, M. S., & Fatah, Z. (2024). Analisis pengelompokan data nilai siswa untuk menentukan siswa berprestasi menggunakan metode clustering k- means. Jurnal Riset Sistem InformasI, 1(4), 103–110.

Saputra, E. A., & Nataliani, Y. (2021). Analisis Pengelompokan Data Nilai Siswa untuk Menentukan Siswa Berprestasi Menggunakan Metode Clustering K-Means. Journal of Information Systems and Informatics, 3(3), 424-439. https://doi.org/10.51519/journalisi.v3i3.164

Setiawan, K., & Mailoa, E. (2025). Pengelompokan gaya belajar siswa untuk mendukung efektifitas pembelajaran dengan k-means. JTIK (Jurnal Teknologi Informasi Dan Komunikasi), 16(2), 26–35.

Silver, B. R. (2023). Major transitions : how college students interpret the process of changing fields of study. Higher Education, 87(0123456789), 1–20. https://doi.org/10.1007/s10734-023-01050-8

Syahril, M., Kusnasari, S., Sobirin, Muhazir, A., & Syahputri, A. (2023). Implementasi data mining untuk rekomendasi jurusan menggunakan algoritma k-means clustering. Jurnal Teknologi Sistem Informasi Dan Sistem Komputer TGD, 6(1), 235–245. https://doi.org/10.53513/jsk.v6i1.7456

Utama, A., Utama, S., Sabilla, W. I., Wakhidah, R., A, W. I., & Wakhidah, R. (2024). Sistem rekomendasi tempat wisata di malang raya menggunakan metode k-means clustering. Jurnal Informatika & Multimedia, 16(1), 1–15. https://doi.org/10.33795/jtim.v16i1.5178

Walangare, R. A. C., & Sujatmiko, B. (2022). Penerapan Algoritma Naive Bayes Dalam Sistem Pendukung Keputusan Pemilihan Peminatan Konsentrasi Berdasarkan Nilai Akademik Berbasis Web Pada Program Studi S1 Pendidikan Teknologi Informasi. IT-Edu: Jurnal Information Technology and Education, 7(3), 74-83. https://doi.org/10.26740/it-edu.v7i3.50086

Zhao, Y., Zhao, C., Wang, Z., & Min, Z. (2024). Cluster analysis and its application in teaching resources of university curriculum: A personalized method. Computer Applications in Engineering Education, 32(2), e22696. https://doi.org/10.1002/cae.22696

Downloads

Published

2025-12-10

How to Cite

Deriska, A., & Suhirman, S. (2025). Sistem Rekomendasi Program Studi berbasis K-Means Clustering menggunakan Asesmen Komprehensif dan Nilai Akademik . Edumatic: Jurnal Pendidikan Informatika, 9(3), 925–934. https://doi.org/10.29408/edumatic.v9i3.32630