Model Convolutional Neural Network berbasis Data Lapangan untuk Deteksi Penyakit Daun Padi

Authors

DOI:

https://doi.org/10.29408/edumatic.v9i3.32634

Keywords:

convolutional neural network, data augmentation, deep learning, digital image processing, rice disease detection

Abstract

Early detection of rice leaf diseases is an important component in maintaining agricultural productivity, especially since rice is a major commodity in Indonesia. However, research on Convolutional Neural Networks (CNN) still uses homogeneous laboratory datasets, which are less than optimal when applied to varying field conditions. This study aims to develop a CNN-based system for classifying rice leaf diseases using field images. This type of research is development using a waterfall model. These stages consist of needs analysis with pre-processing in the form of resizing and augmentation, design, and implementation in a web application. Testing was conducted using a black box to examine the functionality of the system. Our findings show that the system is capable of classifying leaf diseases well based on the field data and functions properly. The training results show an accuracy of 94.64%, precision of 0.93, recall of 0.90, and F1-score of 0.91, with the best performance in the blast and blight classes. Classification errors mainly occurred in the tungro class due to its visual similarity to blast in the early stages of infection. The developed system is capable of performing automatic diagnosis through image uploads and demonstrates learning stability based on the accuracy and loss curves. This research contributes by providing an end-to-end rice leaf disease detection system based on accurate, adaptive, and ready-to-use field data to support direct plant health monitoring in agricultural environments.

References

Adi, R., Hasibuan, N. H., Sitohang, E. J., & Hayatuliman, M. (2024). Analisis kesesuaian lahan untuk tanaman padi sawah di kabupaten subang bagian tengah. Agroista: Jurnal Agroteknologi, 8(1), 20–28. https://doi.org/10.55180/agi.v8i1.1200

Ahad, M. T., Li, Y., Song, B., & Bhuiyan, T. (2023). Comparison of CNN-based deep learning architectures for rice diseases classificatio. Artificial Intelligence in Agriculture, 9, 22–35. https://doi.org/10.1016/j.aiia.2023.07.001

Amalia, V. F., & Dewi, R. R. (2024). Penilaian kesegaran ikan dengan metode K-nearst neighbor dan pengolahan citra digital. Jurnal Mahasiswa Teknik Informatika, 8(4), 7823–7829. https://doi.org/10.36040/jati.v8i4.10441

Chakrabarty, A., Ahmed, S. T., Islam, M. F. U., Aziz, S. M., & Maidin, S. S. (2024). An interpretable fusion model integrating lightweight CNN and transformer architectures for rice leaf disease identification. Ecological Informatics, 82, 102718. https://doi.org/10.1016/j.ecoinf.2024.102718

Chowdhury, S., & Das, D. K. (2025). Harnessing the potato leaf disease detection process through proposed Conv2D and resnet50 deep learning models. Procedia Computer Science, 252, 539–547. https://doi.org/10.1016/j.procs.2025.01.013

Christiawan, G. Y., Putra, R. A., Sulaiman, A., Poerbaningtyas, E., & Putri Listio, S. W. (2023). Penerapan metode convolutional neural network (CNN) dalam mengklasifikasikan penyakit daun tanaman padi. Journal of information and Technology, 11(2), 294–306. https://doi.org/10.32664/j-intech.v11i2.1006

Hidayat, T. (2025). Identifikasi morfologi citra daging menggunakan teknik pengolahan citra digital. JATI (Jurnal Mahasiswa Teknologi Informatika), 9(1), 1580–1586. https://doi.org/10.36040/jati.v9i1.12285

Marwan, H., Hayati, I., & Defitri, Y. (2023). Pengaruh aplikasi formula bakteri endofit terhadap perkembangan penyakit hawar daun bakteri, pertumbuhan, dan produksi tanaman padi. Agrotekma: Jurnal Agroteknologi dan Ilmu Pertanian, 8(1), 38–45. https://doi.org/10.31289/agr.v8i1.10832

Mas’ud, R. A., & Zeniarja, J. (2024). Optimasi convolutional neural networks untuk deteksi kanker payudara menggunakan arsitektur denseNet. Edumatic: Jurnal Pendidikan Informatika, 8(1), 310–318. https://doi.org/10.29408/edumatic.v8i1.25883

Nurohman, Heriansyah, R., Verano, D. A., & Mair, Z. R. (2024). Deteksi penyakit diabetes retinopathy menggunakan citra digital dengan metode convolutional neural network (CNN). November, 311–320. https://doi.org/10.34151/prosidingsnast.v1i1.5120

Padhi, J., Mishra, K., Ratha, A. K., Behera, S. K., Sethy, P. K., & Nanthaamornphong, A. (2025). Enhancing paddy leaf disease diagnosis-a hybrid CNN model using simulated thermal imaging. Smart Agricultural Technology, 10, 100814. https://doi.org/10.1016/j.atech.2025.100814

Pamungkas, N. B., & Suhendar, A. (2024). Penerapan metode convolutional neural network pada sistem klasifikasi penyakit tanaman apel berdasarkan citra daun. Edumatic: Jurnal Pendidikan Informatika, 8(2), 675–684. https://doi.org/10.29408/edumatic.v8i2.27958

Permadi, M. L. B., & Gumilang, R. (2024). Penerapan Algoritma cnn (convolutional neural network) untuk deteksi dan klasifikasi target militer berdasarkan citra satelit. Jurnal Sosial dan Teknologi (SOSTECH), 4(2), 134–143. https://doi.org/10.59188/jurnalsostech.v4i2.1138

Prastita, D. A., Setiawan, A., & Ashari, I. F. (2025). Analisis perbandingan metode convolutional neural network (cnn) untuk deteksi warna pada objek. Bulletin Of Computer Scince Research, 5(4), 821–830. https://doi.org/10.47065/bulletincsr.v5i4.617

Putri, C. A., & Rakasiwi, S. (2025). Diagnosis dini penyakit mata: klasifikasi citra fundus retina dengan convolutional neural network VGG-16. Edumatic: Jurnal Pendidikan Informatika, 9(1), 208–216. https://doi.org/10.29408/edumatic.v9i1.29571

Rahman, K. N., Banik, S. C., Islam, R., & Fahim, A. Al. (2025). A real time monitoring system for accurate plant leaves disease detection using deep learning. Crop Design, 4(1), 100092. https://doi.org/10.1016/j.cropd.2024.100092

Saleh, S. S., Koniyo, M. H., & Polin, M. (2025). Deteksi dini hama dan penyakit tanaman padi dengan metode yolo. DIFFUSION journal Of Sysem and Information Technology, 5(2), 173–182. https://doi.org/10.61132/uranus.v2i3.259

Santosa, A. A., Fu’adah, R. Y. N., & Rizal, A. (2023). Deteksi penyakit pada yanaman padi menggunakan pengolahan citra digital dengan metode convolutional neural network. JESCE (Journal of Electrical and System Control Engineering), 6(2), 98–108. https://doi.org/10.31289/jesce.v6i2.7930

Sufiya, I., Umam, K., & Handayani, M. R. (2025). IKN Public Opinion on TikTok Before and After Efficiency Policy: CNN-LSTM on Imbalanced Data. Edumatic: Jurnal Pendidikan Informatika, 9(2), 402–411. https://doi.org/10.29408/edumatic.v9i2.30123

Taye, M. M. (2023). Theoretical understanding of convolutional neural network: Concepts, architectures, applications, future directions. Computation, 11(3), 52. https://doi.org/10.3390/computation11030052

Triginandri, R., & Subhiyakto, E. R. (2024). Deteksi Dini Cacar Monyet menggunakan Convolutional Neural Network (CNN) dalam Aplikasi Mobile. Edumatic: Jurnal Pendidikan Informatika, 8(2), 516–525. https://doi.org/10.29408/edumatic.v8i2.27625

Widyanto, S., & Subanu, L. P. (2023). The factors of rice farmers’ poverty in indonesia: the perspective of land conversion, land ownership area, and agriculture technologi. Jurnal Kawisastra: The journal of social sciences and humanities, 13(1), 121–134. https://doi.org/10.22146/kawistara.78972

Downloads

Published

2025-12-12

How to Cite

Suryadi, A., & Suhirman, S. (2025). Model Convolutional Neural Network berbasis Data Lapangan untuk Deteksi Penyakit Daun Padi. Edumatic: Jurnal Pendidikan Informatika, 9(3), 955–964. https://doi.org/10.29408/edumatic.v9i3.32634