Benchmarking Model Transformer Modern untuk Analisis Sentimen dan Tren Konsumen dalam Industri Fashion

Authors

DOI:

https://doi.org/10.29408/edumatic.v9i3.32657

Keywords:

fast fashion, natural language processing, sentiment analysis, transformers

Abstract

The dynamic trends and consumer preferences in the fashion industry demand accurate sentiment analysis to support decision-making. This study aims to compare the performance of four Transformer models BERT, DistilBERT, RoBERTa, and DeBERTa, in sentiment classification of fashion product reviews to identify which model best captures the semantic nuances specific to this domain. Using an experimental quantitative approach, we analyzed 278,098 TeePublic reviews that underwent text cleaning, class balancing, and tokenization, and were then split into training, validation, and test sets. The four models were fine-tuned using Optuna-optimized hyperparameters and evaluated with accuracy and F1-score. Our results show that all models achieved nearly identical performance, with F1-scores and accuracy ranging from 0.824 to 0.826. ANOVA testing confirmed no significant differences among models, indicating that increased architectural complexity does not yield substantial benefits for a task of this scale. These findings suggest that performance consistency is driven more by preprocessing quality, class-balancing strategies, and pipeline design. The study offers a comparative basis for model selection in fashion-domain sentiment analysis and highlights that optimizing the processing pipeline often brings more meaningful improvements than adopting larger architectures.

References

Albab, W. U., Mardiah, A. R., Ranjani, G., Karina, G. D., & Safitri, M. N. (2024). Pengaruh Industri Fast Fashion Terhadap Pencemaran Lingkungan dan Penurunan Keadilan Antar Generasi. Indonesian Journal of Criminal Law and Criminology, 5(3), 94–103. https://doi.org/https://doi.org/10.18196/ijclc.v5i3.22830

Aliyu, Y., Sarlan, A., Danyaro, K. U., Sani, A., & Rahman, B. A. (2024). Comparative Analysis of Transformer Models for Sentiment Analysis in Low-Resource Languages. International Journal of Advanced Computer Science and Applications, 15(4). https://doi.org/10.14569/IJACSA.2024.0150437

Ananta, A. Y., Ariyanto, R., Rozi, I. F., & Arianto, R. (2025). Analisis Performa Metode Extreme Learning Machine dan Multiple Linear Regression dalam Prediksi Produksi Gula. Edumatic: Jurnal Pendidikan Informatika, 9(1), 169–178. https://doi.org/10.29408/edumatic.v9i1.29626

Berliana, A. S., & Mustikasari, M. (2024). Analisis Sentimen pada Ulasan Aplikasi JakartaNotebook di Google Play Menggunakan Metode Recurrent Neural Network (RNN). Jurnal Informatika Dan Teknik Elektro Terapan, 12(3), 2830–7062. https://doi.org/10.23960/jitet.v12i3.5067

Braja, A. S. P., & Kodar, A. (2023). Implementasi Fine-Tuning BERT untuk Analisis Sentimen terhadap Review Aplikasi PUBG Mobile di Google Play Store. Jurnal Informatika Merdeka Pasuruan, 7(3), 120. https://doi.org/10.51213/jimp.v7i3.779

Efriadi, D., Rahmaddeni, R., Agustin, A., & Junadhi, J. (2022). Prediksi Penambahan Piutang Iuran Jaminan Sosial Ketenagakerjaan menggunakan Algoritma K-Nearest Neighbor. Edumatic: Jurnal Pendidikan Informatika, 6(1), 49–57. https://doi.org/10.29408/edumatic.v6i1.5255

Hakim, A. L., & Rusadi, E. Y. (2022). Kritik Globalisasi: Fenomena Fast Fashion Sebagai Budaya Konsumerisme Pada Kalangan Pemuda Kota Surabaya. ALMAARIEF, 59-67. https://doi.org/10.35905/almaarief.v4i2.2768

Joshy, A., & Sundar, S. (2022). Analyzing the Performance of Sentiment Analysis using BERT, DistilBERT, and RoBERTa. International Power and Renewable Energy Conference (IPRECON), 1-6. India: IEEE https://doi.org/10.1109/IPRECON55716.2022.10059542

Jumansyah, L., Mohamad Soleh, A., Dyah Syafitri, U., Risman Dwi, L., Mohamad, A., & Dyah, U. (2024). Manifold Learning and Undersampling Approaches for Imbalanced Class Sentiment Classification. Knowledge Engineering and Data Science, 7(2), 139–151.

Kadek, N., & Diantari, Y. (2021). Trend Cycle Analysis on Fast Fashion Products. Journal of Aesthetics, Design, and Art Management, 1(1), 24–33. https://doi.org/10.58982/jadam.v1i1.101

Karimah, N. (2024). Multi-Aspect Sentiment Analysis Pada Review Film Menggunakan Metode Bidirectional Encoder Representations from Transformers (BERT). Komputika : Jurnal Sistem Komputer, 13(1), 63–72. https://doi.org/10.34010/komputika.v13i1.11098

Khadapi, M., & Pakpahan, V. M. (2024). Analisis Sentimen Berbasis Jaringan LSTM dan BERT terhadap Diskusi Twitter tentang Pemilu 2024. Jurnal Komputer dan Informatika. Jurnal Komputer dan Informatika, 6(2), 130–137.

Kim, H. J., Cho, H., Lee, S. W., Kim, J., Park, C., Lee, S. G., Yoo, K. M., & Kim, T. (2023). Universal Domain Adaptation for Robust Handling of Distributional Shifts in NLP. Findings of the Association for Computational Linguistics: Empirical Methods in Natural Language Processing 2023, 1(1), 5888–5905. https://doi.org/10.18653/v1/2023.findings-emnlp.392

Kornelis, Y. (2022). Fenomena Industri Fast Fashion: Kajian Hukum Perspektif Kekayaan Intelektual Indonesia. Jurnal Komunitas Yustisia, 5(1), 262–277. https://doi.org/10.23887/jatayu.v5i1.46040

Kumar, D., & Weissenberger-Eibl, M. (2024, June 19). Artificial Intelligence Driven Trend Forecasting: Integrating BERT Topic Modelling and Generative Artificial Intelligence for Semantic Insights. R&D Management Conference 2024. Stockholm: Fraunhover. https://doi.org/10.24406/publica-3456

Majid, A., Nugraha, D., & Adhinata, F. D. (2023). Sentiment Analysis on Tiktok Application Reviews Using Natural Language Processing Approach. Journal of Embedded Systems, Security and Intelligent Systems, 4(1), 32–38. https://doi.org/10.59562/jessi.v4i1.471

Mangal, D., & Makwana, H. (2025). Performance Analysis of Different BERT Implementation for Event Burst Detection from Social Media Text. Indonesian Journal of Electrical Engineering and Computer Science, 38(1), 439–446. https://doi.org/10.11591/ijeecs.v38.i1.pp439-446

Nabila, P., Wajidi, F., & Firgiawan, W. (2025). Analisis Algoritma K-Nearest Neighbor dan Naive Bayes pada Kebijakan Perkuliahan Online dengan Multi Bahasa. Techno.Com, 24(2), 524–542. https://doi.org/10.62411/tc.v24i2.12656

Pangestu, A. G., Winarno, S., Nugraha, A., & Muttaqin, A. N. I. (2025). DiabTrack: Sistem Prediksi Dini Diabetes Melitus Tipe 2 berbasis Web menggunakan Algoritma K-Nearest Neighbors. Edumatic: Jurnal Pendidikan Informatika, 9(1), 284–293. https://doi.org/10.29408/edumatic.v9i1.29691

Rahayu, S., MZ, Y., Bororing, J. E., & Hadiyat, R. (2022). Implementasi Metode K-Nearest Neighbor (K-NN) untuk Analisis Sentimen Kepuasan Pengguna Aplikasi Teknologi Finansial FLIP. Edumatic: Jurnal Pendidikan Informatika, 6(1), 98–106. https://doi.org/10.29408/edumatic.v6i1.5433

Ramadhan, A. F. (2024). Tren Fast Fashion Pakaian Masa New Normal di Indonesia: Efektivitas Konsep Sustainable Fashion Terhadap Lingkungan. Journal of Waste and Sustainable Consumption, 1(2), 77–89. https://doi.org/10.61511/jwsc.v1i2.2024.1247

Riaz, N., Mehboob, H., & Wajid, S. (2024). Natural Language Processing For Sentiment Analysis: A Machine Learning Approach. Contemporary Journal of Social Science Review, 2(04), 106-116.

Rudniy, A., Rudna, O., & Park, A. (2024). Trend tracking tools for the fashion industry: the impact of social media. Journal of Fashion Marketing and Management, 28(3), 503–524. https://doi.org/10.1108/JFMM-08-2023-0215

Rufikasari, Y. D. (2022). Telaah Teologi, Ekonomi dan Ekologi Terhadap Fenomena Fast Fashion Industry. Teologis, Relevan, Aplikatif, Cendikia, Kontekstual, 1(2), 64–83. https://doi.org/10.61660/tep.v1i2.23

Soni, S., & Baldawa, S. (2023). Analyzing Sustainable Practices in Fashion Supply Chain. International Research Journal of Business Studies, 16(1), 11–25. https://doi.org/10.21632/irjbs.16.1.11-25

Wang, D., & Chen, G. (2025). Evaluating the Use of BERT and Llama to Analyse Classroom Dialogue for Teachers’ Learning of Dialogic Pedagogy. British Journal of Educational Technology, 56(6), 2671–2704. https://doi.org/10.1111/bjet.13604

Downloads

Published

2025-12-12

How to Cite

Herawan, D. F., & Saputri, T. R. D. (2025). Benchmarking Model Transformer Modern untuk Analisis Sentimen dan Tren Konsumen dalam Industri Fashion. Edumatic: Jurnal Pendidikan Informatika, 9(3), 945–954. https://doi.org/10.29408/edumatic.v9i3.32657