X-RayVision-Net: CBAM-Infused YOLOv8 for Rapid Pulmonary Disease Recognition

Authors

DOI:

https://doi.org/10.29408/edumatic.v10i1.32784

Keywords:

cbam, computer-aided diagnosis, deep learning, lung disease classification, yolov8

Abstract

Tuberculosis and pneumonia continue to pose major global health challenges, particularly in regions with limited radiological resources, where overlapping chest X-ray patterns often complicate differential diagnosis. This study proposes X-RayVision-Net, a hybrid deep learning framework that integrates the Convolutional Block Attention Module (CBAM) into the YOLOv8 architecture to enhance pulmonary disease classification. A quantitative experimental design was employed using 10,056 chest X-ray images categorized as normal, pneumonia, or tuberculosis, collected from multiple public datasets. Image preprocessing involved Contrast Limited Adaptive Histogram Equalization (CLAHE) and balanced data augmentation to improve visual consistency and address class imbalance. The proposed model was trained for 100 epochs and evaluated against a standard YOLOv8 baseline using accuracy, precision, recall, and F1-score. Experimental results demonstrate that the CBAM-enhanced YOLOv8 model achieved an accuracy of 98.99%, outperforming the baseline model (97.37%) and yielding consistent improvements across all performance metrics. The findings confirm that the incorporation of channel and spatial attention mechanisms effectively refines pulmonary feature representation, facilitating more accurate discrimination between tuberculosis and pneumonia. This framework presents a rapid and reliable computer-aided diagnostic approach suitable for deployment in clinical environments with constrained radiology expertise.

References

Alfaqeeh, M., Ewart, S., Tanoto, R., Buenastuti, W., Isturini, I. A., Yosephine, P., Burhan, E., Siagian, R. C., Hadinegoro, S. R., Lenggogeni, D., White, R. G., Suwantika, A. A., Kasaeva, T., & Giersing, B. (2025). New adult and adolescent tuberculosis vaccines and Indonesia: policy planning and evidence, November 2024. Vaccine, 62, 127490. https://doi.org/10.1016/j.vaccine.2025.127490

Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1). https://doi.org/10.1186/S40537-021-00444-8

Ciptaningtyas, V. R., Sumekar, T. A., Fauzia, L. P., Lestari, E. S., Farida, H., Margawati, A., de Mast, Q., & de Jonge, M. I. (2025). Community-acquired pneumonia in Indonesian children: insights into diagnosis, treatment compliance, and healthcare provider challenges. Archives of Public Health, 83(1), 1–12. https://doi.org/10.1186/s13690-025-01795-x

Firdaus, Y., Nasution, S. K., & Juanita. (2025). Public-Private Mix Strategy for Tuberculosis Control in Medan: A Qualitative Descriptive Study. International Journal of Health, Education & Social (IJHES), 8(6), 106–122.

Guo, M. H., Xu, T. X., Liu, J. J., Liu, Z. N., Jiang, P. T., Mu, T. J., Zhang, S. H., Martin, R. R., Cheng, M. M., & Hu, S. M. (2022). Attention mechanisms in computer vision: A survey. Computational Visual Media 2022 8:3, 8(3), 331–368. https://doi.org/10.1007/S41095-022-0271-Y

Hadhoud, Y., Mekhaznia, T., Bennour, A., Amroune, M., Kurdi, N. A., Aborujilah, A. H., & Al-Sarem, M. (2024). From Binary to Multi-Class Classification: A Two-Step Hybrid CNN-ViT Model for Chest Disease Classification Based on X-Ray Images. Diagnostics, 14(23), 2754. https://doi.org/10.1007/s41095-022-0271-y

Hekmatyar, H. D., Saputra, W. A., & Ramdani, C. (2022). Klasifikasi Pneumonia Dengan Deep Learning Faster Region Convolutional Neural Network Arsitektur VGG16 dan ResNet50. InComTech : Jurnal Telekomunikasi Dan Komputer, 12(3), 186. https://doi.org/10.22441/incomtech.v12i3.15112

Karim, A. H. M. Z., Chowdhury, T., Bil, K., Mahmud, O., Khanam, F., Rahman, K. M. A., & Fahima, R. A. (2024). COVID-19, Pneumonia, and Healthy Lungs Classification Using CNN and Transfer Learning Model Using Chest X-Ray. American Journal of Biomedical Engineering, 12(1), 1–6.

Khalaf, A. T., & Abdulateef, S. K. (2024). Ophthalmic Diseases Classification Based on YOLOv8. Journal of Robotics and Control (JRC), 5(2), 408–415. https://doi.org/10.18196/jrc.v5i2.21208

Muhlashin, M. N. I., & Stefanie, A. (2024). Eye Disease Classification Based On Fundus Image Using Yolo V8. Jurnal Media Computer Science, 3(1), 33–40. https://doi.org/10.37676/jmcs.v3i1.4572

Nunes, J. C. S., Linhares, J. E. B. de S., Postigo, M. A. O., Rio, D. G. d., Sobrinho, A. M. F., & Torné, I. G. (2025). Cancer Cell Classification from Peripheral Blood Smear Data Using the YOLOv8 Architecture. IEEE Access. https://doi.org/10.1109/ACCESS.2025.3573277

Oladimeji, O. O., & Ibitoye, A. O. J. (2023). Brain tumor classification using ResNet50-convolutional block attention module. Applied Computing and Informatics, 20(1/2), 1–17. https://doi.org/10.1108/ACI-09-2023-0022

Pal, V., Pabari, H., Indoria, S., Patel, S., Krishnan, D., & Ravi, V. (2024). Multifaceted Disease Diagnosis: Leveraging Transfer Learning with Deep Convolutional Neural Networks on Chest X-Rays for COVID-19, Pneumonia, and Tuberculosis. The Open Bioinformatics Journal, 17(1). https://doi.org/10.2174/0118750362303182240516043224

Pradeepa, R., Punitha, V., & Senthamil Selvi, R. (2024). Deep Learning Algorithms for Skin Disease Classification. Journal of Innovative Image Processing, 6(2), 84–95. https://doi.org/10.36548/jiip.2024.2.001

Priambodo, A. R., & Fatichah, C. (2025). Leveraging Convolutional Block Attention Module (Cbam) For Enhanced Performance In Mobilenetv3-Based Skin Cancer Classification. Jurnal Teknik Informatika (Jutif), 6(3), 1389–1404. https://doi.org/10.52436/1.jutif.2025.6.3.4546

Susanti, L. A., Soleh, A. M., & Sartono, B. (2023). Deep Learning Image Classification Rontgen Dada pada Kasus Covid-19 Menggunakan Algoritma Convolutional Neural Network. Jurnal Teknologi Informasi Dan Ilmu Komputer, 10(5), 973–982. https://doi.org/10.25126/jtiik.2023107142

Suvvari, T. K. (2025). The persistent threat of tuberculosis − Why ending TB remains elusive? Journal of Clinical Tuberculosis and Other Mycobacterial Diseases, 38, 100510. https://doi.org/10.1016/j.jctube.2025.100510

Theotokis, P. (2025). Human Brain Inspired Artificial Intelligence Neural Networks. Journal of Integrative Neuroscience, 24(4), 26684. https://doi.org/10.31083/JIN26684

Umar, K. F., Noor, N. N., Maria, I. L., Bustan, M. N., Abdullah, M. T., & Thaha, R. M. (2024). Risk Factor of Paediatric Community-Acquired Pneumonia in Wajo Regency, Indonesia. National Journal of Community Medicine, 15(02), 98–104. https://doi.org/10.55489/njcm.150220243601

Yan, J., Zeng, Y., Lin, J., Pei, Z., Fan, J., Fang, C., & Cai, Y. (2024). Enhanced object detection in pediatric bronchoscopy images using YOLO-based algorithms with CBAM attention mechanism. Heliyon, 10(12), e32678. https://doi.org/10.1016/j.heliyon.2024.e32678

Yu, X., Yang, X., Song, Y., Yu, J., Jiang, T., Tang, H., Yang, X., Zeng, X., Bi, J., Shen, A., & Sun, L. (2025). Lower respiratory tract co-infection of Streptococcus pneumoniae and respiratory syncytial virus shapes microbial landscape and clinical outcomes in children. Frontiers in Cellular and Infection Microbiology, 15. https://doi.org/10.1016/j.heliyon.2024.e32678

Zhang, P., Sanida, M. V., Sanida, T., Sideris, A., & Dasygenis, M. (2024). An Advanced Deep Learning Framework for Multi-Class Diagnosis from Chest X-ray Images. J, 7(1), 48–71. https://doi.org/10.3390/J7010003

Downloads

Published

2026-02-17

How to Cite

Wijaya, L. M., & Wonohadihjojo, D. M. (2026). X-RayVision-Net: CBAM-Infused YOLOv8 for Rapid Pulmonary Disease Recognition. Edumatic: Jurnal Pendidikan Informatika, 10(1), 1–10. https://doi.org/10.29408/edumatic.v10i1.32784