Machine Learning Approaches for Export Trend Classification: Evidence from Leading Commodities in Indonesia

Authors

DOI:

https://doi.org/10.29408/edumatic.v10i1.32949

Keywords:

export, machine learning, naïve bayes, random forest, sorong city

Abstract

Sorong City holds a strategic position in the export economy of Papua Barat Daya; however, its export performance remains volatile due to global price fluctuations, logistical constraints, and shifts in international demand. To address these challenges, this study applies machine learning-based classification to analyze and predict export trend dynamics of Sorong’s leading commodities. Specifically, the study compares the performance of Naïve Bayes and Random Forest classifiers within a quantitative experimental framework. The dataset comprises 874 export records (2023–2025), including HS Codes, export values, destination countries, exporters, and export types. The methodological workflow encompasses data preprocessing, trend labeling, normalization, label encoding, class balancing using SMOTE, and model evaluation via 80:20 train-test split and 10-fold cross-validation. Performance metrics include accuracy, precision, recall, F1-score, and ROC-AUC. Experimental results reveal that Random Forest outperforms Naïve Bayes, achieving 74% accuracy compared to 57%, and more effectively captures nonlinear feature relationships. Despite a reduction in ROC-AUC during cross-validation, Random Forest demonstrates greater robustness in export trend prediction. Overall, the findings highlight the potential of machine learning to enhance regional trade forecasting, inform evidence-based policy formulation, and strengthen data-driven export management in emerging regional economies.

References

Adi, R. M. S., & Sudianto, S. (2022). Prediksi Harga Komoditas Pangan Menggunakan Algoritma Long Short-Term Memory (LSTM). Building of Informatics, Technology and Science (BITS), 4(2), 1137–1145. https://doi.org/10.47065/bits.v4i2.2229

Akhter, T., Siddiqua, T., Ahmed, F., Babu, A., & Hossain, S. F. A. (2024). Forecasting and unveiling the impeded factors of total export of Bangladesh using nonlinear autoregressive distributed lag and machine learning algorithms. Heliyon, 10(17), 1–17. https://doi.org/10.1016/j.heliyon.2024.e36274

Albanna, H. T., & Diana, D. (2025). Forecasting Penjualan Sembako berbasis Model Prophet : Strategi Efisiensi Stok pada pada Ritel Tradisional. Edumatic: Jurnal Pendidikan Informatika, 9(3), 698–707. https://doi.org/10.29408/edumatic.v9i3.32251

Aprianto, P. R., Lestari, N., & Wulandari, C. (2024). Klasifikasi Data Mining Pada Bibit Pertanian Dengan Menggunakan Algoritma Naïve Bayes. RESOLUSI : Rekayasa Teknik Informatika Dan Informasi, 5(1), 30–39.

Celik, B. A., & Celik, S. (2025). Hybrid forecasting of agricultural commodity prices : Integrating machine learning , time series, and stochastic simulation models. Borsa Istanbul Review, 25(6), 1440–1462. https://doi.org/10.1016/j.bir.2025.10.004

Danny, M., & Muhidin, A. (2025). Optimasi Algoritma Random Forest untuk Prediksi Eksport Kelapa Sawit Global. Bulletin of Computer Science Research, 5(5), 1129–1138. https://doi.org/10.47065/bulletincsr.v5i5.744

Dionissopoulos, I., Assimakopoulos, F., & Spiliotopoulos, D. (2024). Predicting Agricultural Product and Supplies Prices Using Artificial Intelligence. 16th Intenational Conference on Khowledge Management and Information System, 3, 371–379. https://doi.org/10.5220/0013071600003838

Elbasi, E., Zaki, C., Topcu, A. E., Abdelbaki, W., Zreikat, A. I., Cina, E., Shdefat, A., & Saker, L. (2023). Crop Prediction Model Using Machine Learning Algorithms. Applied Sciences, 13(16), 9288. https://doi.org/10.3390/app13169288

Fakhrizal, D., Ananda Sutrisno, A., Afza Zain, N., Angga Mukti, G., & Setiawan, A. (2025). Implementasi Algoritma Machine Learning Menggunakan Model Random Forest Untuk Klasifikasi Obesitas. JATI (Jurnal Mahasiswa Teknik Informatika), 9(5), 7579–7584. https://doi.org/10.36040/jati.v9i5.14667

Harjanto, S. A., Sa’adah, S., & Wulandari, G. S. (2023). Export Commodity Price Forecasting in Indonesia Using Decision Tree, Random Forest, and Long Short-Term Memory. Jurnal Ilmiah Teknik Elektro Komputer Dan Informatika (JITEKI), 8(4), 660–669. https://doi.org/10.26555/jiteki.v8i4.25242

Hathikal, S., Chung, S. H., & Karczewski, M. (2020). Prediction of ocean import shipment lead time using machine learning methods. SN Applied Sciences, 2(7), 1272. https://doi.org/10.1007/s42452-020-2951-5

He, M., Wang, X., Zou, C., Dai, B., & Jin, L. (2021). A Commodity Classification Framework Based on Machine Learning for Analysis of Trade Declaration. Symmetry, 13(6), 964. https://doi.org/10.3390/sym13060964

Muzwardi, A., & Nurhayati, N. (2025). Examining Sorong Special Economic Zone and its Implications for the Region. Papua Journal of Diplomacy and International Relations, 5(1), 86–98. https://doi.org/10.31957/pjdir.v5i1.4319

Özden, E. (2022). The Dynamics Affecting the Export-Import Ratio in Turkey: A Hybrid Model Proposal with Econometrics and Machine Learning Approach. Journal of Economic Policy Researches / İktisat Politikası Araştırmaları Dergisi, 9(2), 265–291. https://doi.org/10.26650/JEPR1088322

Pratama, N. K., & Hutajulu, D. M. (2022). Pengaruh Harga Bahan Kebutuhan Pokok Terhadap Inflasi di Kota Sorong. Jurnal Wira Ekonomi Mikroskil, 12(1), 9–20. https://doi.org/10.55601/jwem.v12i1.821

Purnama, P. A. W., & Putra, T. A. (2024). Klasifikasi Penjualan Produk Menggunakan Algoritma Naive Bayes pada Konter HP Bayu Cell. Remik: Riset Dan E-Jurnal Manajemen Informatika Komputer, 8(1), 286–292.

Qi, L., Zhang, Q., Lin, X., Zhang, J., & Liao, M. (2025). Attribute knowledge and KBGAT for predicting the accuracy of the harmonized system code for classifying import and export commodities. Scientific Reports, 15(43504), 1–20. https://doi.org/10.1038/s41598-025-16580-7

Ramadhani, L. K. (2022). Prediksi Ekspor & Impor Komoditas Pertanian Menggunakan Metode Jaringan Syaraf Tiruan Radial Basis Function. Joined Journal (Journal of Informatics Education), 5(1), 36-44. https://doi.org/10.31331/joined.v5i1.2131

Sarangi, P. K., Singh, E., Kaushal, A., Sharma, B., Dutta, M., & Dubey, V. P. (2025). Analysing the Fluctuations in Commodity Prices and Forecasting the Future Directions Using Machine Learning Techniques. Procedia Computer Science, 259, 1827–1836. https://doi.org/10.1016/j.procs.2025.04.138

Suhadi, E. (2025). Analisis Sentimen Aplikasi Bisa Ekspor Pada Ulasan Pengguna di Google Play dengan Naive Bayes. JIKA (Jurnal Informatika), 9(1), 93. https://doi.org/10.31000/jika.v9i1.12876

Thaker, A., Chan, L. H., & Sonner, D. (2024). Forecasting Agriculture Commodity Futures Prices with Convolutional Neural Networks with Application to Wheat Futures. Journal of Risk and Financial Management, 17(143), 1–15. https://doi.org/10.3390/jrfm17040143

Tiits, M., Kalvet, T., Ounoughi, C., & Yahia, S. Ben. (2024). Relatedness and product complexity meet gravity models of international trade. Journal of Open Innovation: Technology, Market, and Complexity, 10(2), 100288. https://doi.org/10.1016/j.joitmc.2024.100288

Waleed, M., Um, T. W., Kamal, T., & Usman, S. M. (2021). Classification of agriculture farm machinery using machine learning and internet of things. Symmetry, 13(3), 1–16. https://doi.org/10.3390/sym13030403

Yunita, Y., Yulisa, N., Putri Sekar Mayasari, D., & Pujianto, P. (2025). Prediksi Harga Kopi Robusta Kabupaten Muara Enim Tahun 2025 Menggunakan Metode Random Forest, SVM & Tree. Prosiding Seminar Nasional Teknologi Informasi Dan Bisnis, 1602–1609. https://doi.org/10.47701/f9r5fm79

Zhang, R., Xie, Q., & Xu, Y. (2022). A study on the identification of economic contribution of import and export based on random forest algorithm under Gini index. BCP Business & Management, 23, 206–215. https://doi.org/10.54691/bcpbm.v23i.1352

Downloads

Published

2026-02-18

How to Cite

Muslimah, V., Rezki, R., & Jabar, W. A. (2026). Machine Learning Approaches for Export Trend Classification: Evidence from Leading Commodities in Indonesia. Edumatic: Jurnal Pendidikan Informatika, 10(1), 11–20. https://doi.org/10.29408/edumatic.v10i1.32949