Anti - Klon Pendekatan Ringan untuk Mendeteksi Serangan Kloning RFID

Authors

  • Sohibul Burok Universitas Madura
  • Fauzan Prasetyo Eka Putra University of Madura
  • Akmal University of Madura
  • Lukman Fermadi University of Madura

DOI:

https://doi.org/10.29408/jit.v8i2.30392

Keywords:

RFID, cloning detection, lightweight cryptography, ensemble learning, signal fingerprinting, AES-128, edge computing

Abstract

This study develops an RFID tag cloning detection system based on edge computing to enhance security in educational environments by integrating three core approaches: Lightweight AES-128 encryption with automatic key rotation every 3 minutes, multidimensional signal fingerprinting analysis (RSSI, phase, and Doppler shift), and ensemble learning-based classification using the k-NN algorithm (k = 5) with dimensionality reduction via PCA. The system is implemented using a Raspberry Pi 4 as the main processor and an Arduino Nano for tag interfacing, supported by an Impinj R420 reader and RTL-SDR v3 for signal acquisition. The dataset consists of 1,200 RFID tag samples (800 genuine and 400 cloned) collected at Universitas Indonesia, with cloned tags generated using Proxmark3 and ChameleonMini. Experimental results show that the system achieves a detection accuracy of 96.7%, validated through 10-fold cross-validation, with a response time of 8.2 ms per tag and power consumption of only 34.6 mW. A Kappa coefficient (κ) of 0.82 indicates high classification consistency. In real-world implementation, the system successfully reduced cloning cases from 15 to just 2 per month. The system outperforms conventional methods such as EPC Gen2, which offers only 78.2% accuracy, and AES-256, which has significantly higher power consumption (62 mW). Its advantages lie in real-time operation with low power consumption, enabled by an edge computing architecture that eliminates the need for an external server. The findings demonstrate the effectiveness of the system as a reliable and practical RFID cloning detection solution suitable for resource-constrained educational environments.

Author Biographies

Fauzan Prasetyo Eka Putra, University of Madura

Permanent lecturer in Informatics Engineering Study Program, Faculty of Engineering, University of Madura. Teaching Computer Network, Network Security, and Server Administration courses.

Akmal, University of Madura

Student of Informatics Engineering Study Program, Faculty of Engineering, University of Madura. Focus on the field of network security and intelligent system development.

Lukman Fermadi, University of Madura

Student of Informatics Engineering Study Program, Faculty of Engineering, University of Madura. Focus on the field of network security and intelligent system development.

References

[1] M. Piva, B. Michali, dan F. Restuccia, “The Tags Are Alright: Robust Large Scale RFID Clone Detection Through Federated Data Augmented Radio Fingerprinting,” arXiv preprint, 2021.

[2] Y. Feng, W. Huang, Z. Liu, Y. Zhang, dan X. Li, “Anti Clone: A Lightweight Approach for RFID Cloning Attacks Detection,” dalam EAI CollaborateCom, vol. 447, hlm. 51–67, 2022. doi:10.1007/978 3 031 24386 8_5

[3] Y. Feng, W. Huang, dan L. Zhang, “Detection of RFID cloning attacks: A spatiotemporal trajectory data stream based practical approach,” Computer Networks, vol. 194, hlm. 108160, 2021. doi:10.1016/j.comnet.2021.108160

[4] H. Liu, L. Wang, dan X. Du, “ACD: An Adaptable Approach for RFID Cloning Attack Detection,” Sensors, vol. 20, no. 23, hlm. 6853, 2020. doi:10.3390/s20236853

[5] S. Zhao, H. Lin, dan H. Zhang, “RF Fingerprint Based Spoofing Detection in IoT Networks Using Deep Adversarial Learning,” IEEE IoT Journal, vol. 10, no. 2, hlm. 1879–1891, Jan. 2023. doi:10.1109/JIOT.2022.3222454

[6] A. F. Alshareef, A. M. Aljohani, dan T. A. Gulliver, “A Lightweight RFID Mutual Authentication Protocol Based on Physical Unclonable Function,” Sensors, vol. 19, no. 21, hlm. 4681, 2019. doi:10.3390/s19214681

[7] R. K. Harahap et al., “Securing RFID in IoT Networks With Lightweight AES and ECDH Cryptography Approach,” JNTETI, vol. 13, no. 3, Agust. 2024. doi:10.22146/jnteti.v13i3.11824

[8] F. Chen, A. Hu, dan T. Chen, “A lightweight secure authentication approach based on stream cipher for RFID systems,” Computers & Security, vol. 122, hlm. 102852, 2022. doi:10.1016/j.cose.2022.102852

[9] G. Zhang, J. Wu, dan L. Chen, “A review of RFID applications and security challenges in supply chain management,” Computers & Security, vol. 117, hlm. 102683, Jan. 2022. doi:10.1016/j.cose.2022.102683

[10] G. Zhao, Y. Yang, dan S. He, “Lightweight authentication for IoT-based RFID applications,” IEEE IoT Journal, vol. 10, no. 3, hlm. 2435–2446, Jan. 2023. doi:10.1109/JIOT.2022.3157460

[11] T. M. Fernández Caramés et al., “Reverse Engineering and Security Evaluation of Commercial Tags for RFID Based IoT Applications,” arXiv preprint, Feb. 2024.

[12] G. Shen, J. Zhang, A. Marshall, L. Peng, dan X. Wang, “Radio Frequency Fingerprint Identification for LoRa Using Spectrogram and CNN,” dalam Proc. IEEE Conf. Comput. Commun., Mei 2021.

[13] X. Qi, A. Hu, dan T. Chen, “Lightweight authentication scheme for V2X RFID based on temporal correlation,” IEEE Trans. Inf. Forensics Security, vol. 19, hlm. 1056–1070, 2024.

[14] A. Al Shawabka et al., “DeepLoRa: Fingerprinting LoRa Devices at Scale Through Deep Learning and Data Augmentation,” dalam Proc. 22nd IARIA Symp., Jul. 2021.

[15] G. Shen et al., “Towards scalable and channel robust radio frequency fingerprint identification for LoRa,” IEEE Trans. Inf. Forensics Security, vol. 17, hlm. 774–787, 2022.

[16] G. Shen et al., “Deep Learning Powered Radio Frequency Fingerprint Identification: Methodology and Case Study,” IEEE Commun. Mag., vol. 61, no. 9, hlm. 1–7, Sep. 2023.

[17] G. Shen et al., “Towards receiver agnostic and collaborative radio frequency fingerprint identification,” IEEE Trans. Mobile Comput., vol. 23, no. 7, hlm. 7618–7634, Jul. 2024.

[18] W. Yan, T. Voigt, dan C. Rohner, “RRF: A Robust Radiometric Fingerprint System That Embraces Wireless Channel Diversity,” dalam Proc. ACM Conf. Secur. Privacy Wireless Mobile Netw., Mei 2022.

[19] J. Yu, A. Hu, G. Li, dan L. Peng, “A Robust RF Fingerprinting Approach Using Multisampling Convolutional Neural Network,” IEEE IoT Journal, vol. 6, no. 4, hlm. 6786–6799, Aug. 2019.

[20] Q. Yuan et al., “Specific Emitter Identification Based on Multi Level Sparse Representation in AIS,” IEEE Trans. Inf. Forensics Security, vol. 16, hlm. 2872–2884, 2021.

[21] N. Soltani et al., “More Is Better: Data Augmentation for Channel Resilient RF Fingerprinting,” IEEE Commun. Mag., vol. 58, no. 10, hlm. 66–72, Okt. 2020.

[22] N. Soltani et al., “RF Fingerprinting UAVs with Non Standard Transmitter Waveforms,” IEEE Trans. Veh. Technol., vol. 69, no. 12, hlm. 15518–15531, Des. 2020.

[23] D. D. Sarpong et al., “Model Agnostic Uncertainty Quantification for Fast NFC Tag Identification Using RF Fingerprinting,” arXiv preprint, Mar. 2025.

[24] A. Jagannath, J. Jagannath, dan P. P. V. Kumar, “A Comprehensive Survey on Radio Frequency (RF) Fingerprinting: Traditional Approaches, Deep Learning, and Open Challenges,” arXiv preprint, Jan. 2022.

[25] R. Xie et al., “A Generalizable Model and Data Driven Approach for Open Set RFF Authentication,” IEEE Trans. Inf. Forensics Security, vol. 16, hlm. 4435–4450, 2021.

[26] M. Piva, G. Maselli, dan F. Restuccia, “Robust Large Scale Investigation into RFID Fingerprinting with Dynamic Channel Conditions,” arXiv preprint, 2021.

[27] R. Xie et al., “Spotr: GPS Spoofing Detection via Device Fingerprinting,” dalam Proc. 13th ACM Conf. Secur. Privacy Wireless Mobile Netw., Jul. 2020, hlm. 242–253.

[28] C. Zhang et al., “Federated Radio Frequency Fingerprinting with Model Transfer and Adaptation,” dalam Proc. IEEE Conf. Comput. Commun. Workshops, Mei 2023.

[29] J. Smales et al., “Watch This Space: Securing Satellite Communication Through Resilient Transmitter Fingerprinting,” dalam Proc. ACM SIGSAC CCS, Nov. 2023, hlm. 608–621.

[30] G. Shen et al., “Length Versatile and Noise Robust Radio Frequency Fingerprint Identification,” IEEE Trans. Inf. Forensics Security, vol. 18, hlm. 2355–2367, 2023.

[31] P. J. Molino, K. Mandal, dan A. P. Campbell, “RFID Based Indoor Localization with Secure Fingerprinting,” Sensors, vol. 24, no. 7, p. 2456, 2024.

[32] L. Sun, Y. Zhang, dan S. Chen, “Lightweight Chaotic Encryption Scheme for RFID Tags,” IEEE Access, vol. 11, hlm. 32045–32056, 2023.

[33] Y. Zhou et al., “Optimized Lightweight Mutual Authentication for IoT Enabled RFID,” IEEE Internet of Things Magazine, vol. 5, no. 5, hlm. 32–41, 2022.

[34] T. Kim, C. Hwang, dan D. Kim, “PUF Based RFID Tag Authentication Using Lightweight Security Protocol,” IEEE Access, vol. 10, hlm. 10924–10936, 2022.

[35] A. Ghosh, R. F. Schneider, dan U. Vishwanath, “Towards Real Time Detection of RFID Tag Cloning Using Statistical Feature Analysis,” IEEE Trans. Veh. Technol., vol. 71, no. 12, hlm. 14392–14404, Des. 2022.

[36] E. Fernandez Carames, P. Fraga Lamas, dan J. Bolsas, “RFID Based IoT Authentication and Security Solutions: A Survey,” IEEE Access, vol. 9, hlm. 54955–54980, 2021.

[37] Z. Li, F. Liu, dan T. Zhao, “Fast and Secure RFID Authentication for Low Power Devices,” Sensors, vol. 23, no. 10, p. 4519, 2023.

[38] M. Alam et al., “Hardware Efficient AES 128 Implementation for RFID Tag Security,” IEEE Trans. Circuits and Systems II, vol. 71, no. 1, hlm. 23–27, 2024.

[39] C. Wei, L. Liu, dan C. Xu, “Low Cost AES 256 Light RFID Authentication: Performance and Security Evaluation,” Sensors, vol. 24, no. 4, p. 1789, 2024.

[40] N. Huang et al., “Adaptive Key Rotation for Lightweight RFID Cryptography,” IEEE IoT Journal, vol. 11, no. 2, hlm. 826–839, Feb. 2024.

[41] S. Park, K. Lee, dan J. Yoon, “Real Time RFID Cloning Detection System Based on Signal Feature Analysis,” IEEE Trans. Veh. Technol., vol. 73, no. 1, hlm. 568–582, Jan. 2024.

[42] K. Kim dan M. Chung, “Edge Based RFID Authentication Using Lightweight Encryption and Fingerprinting,” Sensors, vol. 23, no. 15, p. 6271, 2023.

[43] W. Su, F. Yang, dan Q. Zhou, “RF Fingerprinting System for Secure Asset Tracking,” IEEE Systems Journal, vol. 17, no. 2, hlm. 1105–1116, 2023.

[44] J. Qian, X. Liang, dan G. Shen, “Collision Resilient RF Fingerprint Authentication for RFID and IoT,” IEEE Communications Letters, vol. 27, no. 4, hlm. 733–737, April 2023.

[45] S. Lin et al., “Secure Lightweight Cryptography for RFID Tags: Implementation and Evaluation,” Sensors, vol. 24, no. 22, p. 8556, 2024.

[46] Y. Kim, J. Seo, dan H. Kim, “UHF RFID Tag Fingerprint Identification Using CNN and Transformer,” IEEE IoT Journal, vol. 11, no. 4, hlm. 3206–3218, Apr. 2024.

[47] Q. Wu, T. He, dan S. Wang, “Lightweight RFID Clone Detection Based on RF Fingerprinting and K Means Clustering,” Sensors, vol. 23, no. 20, p. 9123, 2023.

[48] H. Yao, L. Wen, dan B. Tao, “Efficient and Robust RFID Tag Authentication Using Temporal RF Fingerprint,” IEEE Systems Journal, vol. 18, no. 1, hlm. 678–688, Mar. 2024.

[49] Z. Sun, J. Wen, dan Y. Tian, “RFID Fingerprint Authentication Under Real World Channel Impairments,” IEEE Trans. Industrial Informatics, vol. 20, no. 3, hlm. 2085–2094, 2024.

[50] L. Li, S. Chen, dan Y. Zhu, “A Novel Edge Based Crypto Fingerprint Approach for RFID Device Security,” IEEE IoT Journal, vol. 11, no. 5, hlm. 5420–5432, May 2024.

[51] F. Prasetyo et al., "Hybrid Lightweight Cryptography and RF Fingerprinting for Secure RFID Systems," IEEE Trans. Inf. Forensics Security, vol. 19, hlm. 2105-2118, 2024.

[52] R. Kurniawan et al., "Educational RFID Security: Case Study of Clone Attack Prevention in Campus Environments," J. Inf. Secur. Appl., vol. 68, hlm. 103256, 2023

[53] A. Sudianto, B. A. C. Permana, Muhammad Wasil, and Harianto, “Penerapan Sistem Payment Gateway Pada E-Commerce Sebagai Upaya Peningkatan Penjualan”, INFOTEK, vol. 8, no. 1, pp. 271–279, Jan. 2025. doi: 10.29408/jit.v8i1.28323

Downloads

Published

15-07-2025

How to Cite

Burok, S., Eka Putra, F. P., Akmal, & Fermadi, L. (2025). Anti - Klon Pendekatan Ringan untuk Mendeteksi Serangan Kloning RFID. Infotek: Jurnal Informatika Dan Teknologi, 8(2), 458–468. https://doi.org/10.29408/jit.v8i2.30392

Similar Articles

<< < 1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.