Sistem Deteksi Infeksi COVID-19 Pada Hasil X-Ray Rontgen menggunakan Algoritma Convolutional Neural Network (CNN)

Authors

DOI:

https://doi.org/10.29408/jit.v4i2.3582

Keywords:

Computer Vision, Deep Learning, Convolutional Neural Network

Abstract

The development of the world's technology is growing rapidly, especially in the field of health in the form of detection tools of various objects, including disease objects. The technology in point is part of artificial intelligence that is able to recognize a set of imagery and classify automatically with deep learning techniques. One of the deep learning networks widely used is convolutional neural network with computer vision technology. One of the problems with computer vision that is still developing is object detection as a useful technology to recognize objects in the image as if humans knew the object of the image. In this case, a computer machine is trained in learning using artificial neural networks. One of the sub types of artificial neural networks that are able to handle computer vision problems is by using deep learning techniques with convolutional neural network algorithms. The purpose of this research is to find out how to design the system, the network architecture used for COVID-19 infection detection. The system cannot perform detection of other objects. The results of COVID-19 infection detection with convolutional neural network algorithm show unlimited accuracy value that ranges from 60-99%

Author Biographies

Muhammad Saiful, Univesrsitas Hamzanwadi

Universitas Hamzanwadi

Lalu Muhammad Samsu, Universitas Hamzanwadi

Universitas Hamzanwadi

Faturrahman rahman, Universitas Hamzanwadi

Univrsitas Hamzawadi

References

W. Moh. Farid and S. Jagat, "Pemanfaatan Teknik Pengenalan Wajah Berbasis Opencv untuk Sistem Informasi Pencatatan Kehadiran Dosen," Infotek: Jurnal Informatika dan Teknologi, vol. 1, no. 2, pp. 96 - 106, Juli 2018.

I. Fathurrahman and I. Gunawan, "Pengenalan Citra Logo Kendaraan Menggunakan Metode Gray Level Co-Occurence Matrix (Glcm) dan Jst-Backpropagation," Infotek: Jurnal Informatika dan Teknologi, vol. 1, no. 1, p. 47 – 55, Januari 2018.

I. Fathurrahman, A. Muliawan Nur and Fathurrahman, "Identifikasi Kematangan Buah Mentimun Berbasis Citra Digital Menggunakan Jaringan Syaraf Tiruan Backpropagation," Infotek: Jurnal Informatika dan Teknologi, vol. 1, no. 2, pp. 27 - 33, Januari 2019.

Rismiyati, "Implementasi Convolutional Neural Network untuk Sortasi Mutu Salak Ekspor Berbasis Citra Digital," Yogyakarta, 2016.

M. S. L.M. Samsu, "Komparasi Algoritma Denoising Dan Binarization Dengan Adaptive Thresholding Dan Morfologi Untuk Menigkatkan Kualitas Keterbacaan Citra Naskah Lontar (Takepan) Sasak," Jurnal Informatika dan Teknologi, vol. 3, pp. 204-210, 02 07 2020.

Huang and e. al, "Clinical features of patients infected with 2019 novel coronavirus in Wuhan China," The Lancet, vol. 6736(20), pp. 1-10, 2020.

M. Saiful, "Implementasi Algoritma Naive Bayes Untuk Memprediksi Predikat Ketuntasan Belajar Siswa Pasca Pandemi Covid 19," Jurnal Informatika, vol. 4, pp. 29-38, 2021.

D. Wang and e. al, "Clinical Characteristics Of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China," Journal of The American Medical Association, vol. 323(11), pp. 1061-1069, 2020.

A. Ahmad, "Mengenal Artificial Intelligence, Machine Learning, Neural Network, dan Deep Learning," Jurnal Teknologi Indonesia, 2017.

L. &. Y. D. Deng, Deep Learning: Methods and Application, Foundations and Trends in Signal Processing., 2014. .

LeCun, Y. Bengio and G. Y. Hinton, "Deep Learning," Retrieved from Nature International Journal of Science, vol. 521 (7533), pp. 436-444, 2015..

L. F. Basuki, 05 2020. [Online]. Available: http://elib.unikom.ac.id/gdl.php?mod=browse&op=read &id=jbptunikompp-gdl-lutfifebri-35958.

F. Jalled, Object Detection Using Image Processing, Diakses dari https://arxiv.org/pdf/1611.07791.pdf, 2016..

Goodfellow, I. Bengjo and A. Y. Courville, Deep Learning (Adaptive Computation and Machine Learning Series), The MIT Press, 2016.

Ldya and e. al, "Pengertian Citra," Universitas Sumatera Utara, Medan, 2010.

R. Nouroz, "What is the benefit of using average pooling rather than max pooling," 05 2020. [Online]. Available: https://www.quora.com/What-is-the-benefit-of-using-average-pooling-rather-than-max-pooling.

S. Sagar, "Activation Functions: Neural Networks," 05 2020. [Online]. Available: https://towardsdatascience.com/activation-functions-neural- networks1cbd9f8d91d6.

T. Rahman, Maret 2020. [Online]. Available: https://www.kaggle.com/tawsifurrahman/covid19-radiography-database?select=COVID-19+Radiography+Database.

Downloads

Published

31-07-2021

How to Cite

Saiful, M., Samsu, L. M., & rahman, F. (2021). Sistem Deteksi Infeksi COVID-19 Pada Hasil X-Ray Rontgen menggunakan Algoritma Convolutional Neural Network (CNN). Infotek: Jurnal Informatika Dan Teknologi, 4(2), 217–227. https://doi.org/10.29408/jit.v4i2.3582

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 2 3 4 5 6 7 

You may also start an advanced similarity search for this article.