KLASIFIKASI PENENTUAN PENERIMA PROGRAM KELUARGA HARAPAN (PKH) MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE (SVM) PADA KANTOR DINAS SOSIAL LOMBOK TIMUR
DOI:
https://doi.org/10.29408/jit.v3i1.1802Keywords:
Data Mining, Classification, SVM, PKH Recipient DataAbstract
The Family of Hope Program (PKH) is a program of giving cash to Very Poor Households (RTSM) based on established terms and conditions. Where PKH was implemented in Indonesia in 2007, but in East Lombok PKH was only implemented in 2011. However, judging from the data of PKH recipient members, there are still many RTSM who do not get the PKH assistance. This situation identified the data collection method and the determination of priorities that were not yet on target. From these problems, it is necessary to utilize data mining techniques using the support vector machine (SVM) algorithm in determining PKH recipients. After testing 4 times using different K-Fold Validation on the cross validation operator. K-Fold Validation functions to divide the amount of training data and testing data on the data being tested. Then the accuracy results that have been tested are 95.41%.
DOI : 10.29408/jit.v3i1.1802
References
Diahloka, C. et al. (2014) ‘IMPLEMENTASI PROGRAM KELUARGA HARAPAN ( PKH ) UNTUK MENINGKATKAN KESEJAHTERAAN MASYARAKAT MISKIN’, 3(1), pp. 29–37.
Fiska, R. R. (2017) ‘Penerapan Teknik Data Mining dengan Metode Support Vector Machine (SVM) untuk Memprediksi Siswa yang Berpeluang Drop Out (Studi Kasudi SMKN 1 Sutera)’, 1(01), pp. 42–51.
Rahmansyah, N. (2016) ‘ANALISA ALGORITMA SUPPORT VECTOR MACHINE ( SVM ) DALAM MEMPREDIKSI NASABAH YANG’, 3(1), pp. 67–77.
Setiyono, A. and Pardede, H. F. (2019) ‘Klasifikasi sms spam menggunakan support vector machine’, 15(2), pp. 275–280. doi: 10.33480/pilar.v15i2.693.
Saputra, E. P. (2015). Penerapan Algoritma SVM Berbasis PSO untuk Tingkat Pelayanan Marketing terhadap Loyaliti Pelanggan Kartu Kredit,†vol. XII, no. 2.
Muslim Hidayat. (2018) “PENENTUAN PEMBERIAN BANTUAN PROGRAM KELUARGA,†pp. 98–106.
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Semua tulisan pada jurnal ini menjadi tanggung jawab penuh penulis. Jurnal Infotek memberikan akses terbuka terhadap siapapun agar informasi dan temuan pada artikel tersebut bermanfaat bagi semua orang. Jurnal Infotek ini dapat diakses dan diunduh secara gratis, tanpa dipungut biaya sesuai dengan lisense creative commons yang digunakan.Jurnal Infotek is licensed under a Creative Commons Attribution 4.0 International License.
Statistik Pengunjung