Pengembangan Model Convolutional Neural Network (CNN) untuk Klasifikasi Penyakit Kulit Berbasis Citra Digital

Authors

DOI:

https://doi.org/10.29408/jit.v8i1.28655

Keywords:

CNN, Skin Disease Classification, Digital Imaging

Abstract

This study aims to develop a skin disease classification model based on Convolutional Neural Networks (CNN) specifically designed to classify three types of skin diseases: acne, ringworm, and tinea versicolor. Unlike some previous studies that utilized datasets from various domains such as textile images, plants, and blood cell images, this research specifically employs a dataset relevant to skin diseases. The dataset used in this study consists of 810 skin disease images, divided into 600 images for training (200 images each for acne, tinea versicolor, and ringworm) and 210 images for testing. To enhance data variation and support model generalization, the dataset was processed using augmentation techniques. The model's performance evaluation showed promising results, with an average accuracy of 87.14%. Additionally, the model achieved precision, recall, and F1-score values of 87% each, demonstrating its ability to detect and classify skin diseases consistently. This study is expected to serve as a foundation for developing more accurate and efficient technology-based diagnostic tools, particularly for skin diseases, in the future

References

Lestari R. Hubungan Sanitasi Lingkungan Dengan Gejala Penyakit Kulit Di Wilayah Kerja Puskesmas Sukamenanti Kabupaten Pasaman Barat. Nan Tongga Heal Nurs. 2022;17(1):14–23.

Mukhlis Santoso, Sarjon Defit, Yuhandri. Penerapan Convolutional Neural Network pada Klasifikasi Citra Pola Kain Tenun Melayu. J CoSciTech (Computer Sci Inf Technol. 2024;5(1):177–84.

Siti Aisyah, Rini Astuti, Fadhil M Basysyar, Odi Nurdiawan, Irfan Ali. Convolutional Neural Networks for Classification Motives and the Effect of Image Dimensions. J RESTI (Rekayasa Sist dan Teknol Informasi). 2024;8(1):181–8.

Dandi Darojat M, Sari YA, Wihandika RC. Convolutional Neural Network untuk Klasifikasi Citra Makanan Khas Indonesia. J Pengemb Teknol Inf dan Ilmu Komput [Internet]. 2021;5(11):4764–9. Available from: http://j-ptiik.ub.ac.id

Saksenata AF, Minarno AE, Azhar Y. Klasifikasi Citra Sel Darah Untuk Penyakit Malaria Dengan Metode CNN. J Repos. 2022;4(2):185–94.

Rozaqi AJ, Sunyoto A, Arief M rudyanto. Deteksi Penyakit Pada Daun Kentang Menggunakan Pengolahan Citra dengan Metode Convolutional Neural Network. Creat Inf Technol J [Internet]. 2021 Mar 31;8(1):22. Available from: https://citec.amikom.ac.id/main/index.php/citec/article/view/263

Septian MRD, Paliwang AAA, Cahyanti M, Swedia ER. PENYAKIT TANAMAN APEL DARI CITRA DAUN DENGAN CONVOLUTIONAL NEURAL NETWORK. Sebatik [Internet]. 2020 Dec 16;24(2). Available from: https://jurnal.wicida.ac.id/index.php/sebatik/article/view/1060

Khoiruddin M, Junaidi A, Saputra WA. Klasifikasi Penyakit Daun Padi Menggunakan Convolutional Neural Network. J Dinda Data Sci Inf Technol Data Anal [Internet]. 2022 Feb 23;2(1):37–45. Available from: https://journal.ittelkom-pwt.ac.id/index.php/dinda/article/view/341

Sibarani JS, Tumpal Damanik S, Nurkhalizah R, Mulyana S, Nasution B. Klasifikasi Tanaman Hias Menggunakan Algoritma Convulation Neural Network. J Inf Technol Ampera [Internet]. 2023;4(3):2774–2121. Available from: https://journal-computing.org/index.php/journal-ita/index

Wibawa AP, Guntur M, Purnama A, Fathony Akbar M, Dwiyanto FA. Metode-metode Klasifikasi. Pros Semin Ilmu Komput dan Teknol Inf. 2018;3(1):134–8.

He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. 2016 IEEE Conf Comput Vis Pattern Recognit [Internet]. 2015;770–8. Available from: https://api.semanticscholar.org/CorpusID:206594692

LeCun Y, Bengio Y, Hinton G. Deep learning. Nature [Internet]. 2015 May 28;521(7553):436–44. Available from: https://www.nature.com/articles/nature14539

Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol [Internet]. 1962 Jan;160(1):106–54. Available from: https://physoc.onlinelibrary.wiley.com/doi/10.1113/jphysiol.1962.sp006837

Keijsers NLW. Neural Networks. Encycl Mov Disord Three-Volume Set. 2010;V2-257-V2-259.

Srisantyorini T, Cahyaningsih NF. Analisis Kejadian Penyakit Kulit pada Pemulung di Tempat Pengolahan Sampah Terpadu (TPST) Kelurahan Sumur Batu Kecamatan Bantar Gebang Kota Bekasi. J Kedokt dan Kesehat. 2019;15(2):135.

Cahyawati IN, Budiono I. Faktor yang Berhubungan dengan Kejadian Dermatitis Pada Nelayan. J Kesehat Masy. 2011;6(2):134–41.

Fathurrahman I, Muliawan Nur A, Fathurrahman F. Identifikasi Kematangan Buah Mentimun Berbasis Citra Digital Menggunakan Jaringan Syaraf Tiruan Backpropagation. Infotek J Inform dan Teknol [Internet]. 2019 Jan 29;2(1):27–33. Available from: http://e-journal.hamzanwadi.ac.id/index.php/infotek/article/view/976

Sutojo T, Mulyanto E, Suhartono V, NURHAYATI OKIDWI, others. Teori pengolahan citra digital.

Fathurrahman I, Gunawan I. Pengenalan Citra Logo Kendaraan Menggunakan Metode Gray Level Co-Occurence Matrix (Glcm) dan Jst-Backpropagation. Infotek J Inform dan Teknol [Internet]. 2018 Jan 31;1(1):47–55. Available from: https://e-journal.hamzanwadi.ac.id/index.php/infotek/article/view/894/579

Aris Sudianto, Lalu Kerta Wijaya, Jumawal Jumawal, and Mahpuz Mahpuz, “Penerapan Aplikasi Warung Media Berbasis Android Guna Meningkatkan Promosi dan Penjualan,” Infotek Jurnal Informatika dan Teknologi, vol. 7, no. 1, pp. 267–275, Jan. 2024, doi: https://doi.org/10.29408/jit.v7i1.24482.

Downloads

Published

20-01-2025

How to Cite

Imam Fathurrahman, Mahpuz, Muhammad Djamaluddin, Lalu Kerta Wijaya, & Ida Wahidah. (2025). Pengembangan Model Convolutional Neural Network (CNN) untuk Klasifikasi Penyakit Kulit Berbasis Citra Digital. Infotek: Jurnal Informatika Dan Teknologi, 8(1), 298–308. https://doi.org/10.29408/jit.v8i1.28655

Similar Articles

<< < 1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.