Level of visual geometry skill towards learning style Kolb in junior high school

Authors

  • Anwar Anwar Universitas Samudra https://orcid.org/0000-0003-3742-8580
  • Turmudi Turmudi Universitas Pendidikan Indonesia
  • Dadang Juandi Universitas Pendidikan Indonesia
  • Saiman Saiman Universitas Samudra
  • Muhammad Zaki Universitas Samudra

DOI:

https://doi.org/10.29408/jel.v9i2.15121

Keywords:

global visual, learning style, local visual, problem-solving, visual thinking level

Abstract

This study aims to conduct an in-depth analysis of the visual thinking level of junior high school students with the learning style of assimilators, converges, accommodators, and divergers in solving geometry problems. The type of research used is qualitative research with a grounded theory and case study design. The subjects studied were junior high school students consisting of 6 of 56 students. Data were collected through a learning style inventory (LSI) test given to 56 students to group participants based on the learning style of the Kolb model, then a geometry problem-solving test and interviews were given to 6 students, namely two assimilator students, one converges, one accommodator, and two diverger students. The analysis is based on data from written test results and interviews. Then, time triangulation is carried out to obtain valid research data. The analysis was conducted based on data from written test results and interview results paired with video recordings. Then, triangulation of time is carried out to obtain valid research data. The results of the analysis showed that assimilator students and converger students were able to achieve at the global visual level, namely being able to carry out visual thinking activities well in solving problems, illustrate the problem correctly in geometric drawings/objects, represent problems in mathematical symbols precisely and can express relationships between images well. While accommodator and diverger students can only reach the local visual level, they have yet to be able to show every visual thinking activity well in solving geometry problems, illustrating problems in geometry drawings that could be more precise, and solving rudimentary geometry problems.

Author Biography

Anwar Anwar, Universitas Samudra

Pendidikan Matematika

References

Ali, W. (2017). Deskripsi tingkat berpikir visual dalam memahami definisi formal barisan bilangan real berdasarkan gaya kognitif [Description of the level of visual thinking in understanding the formal definition of real number sequences based on cognitive style]. Repository Universitas Negeri Makassar, 1–15.

Anwar, A., Turmudi, T., Juandi, D., Wahyuni, R., & Muntazhimah, M. (2022). Visual thinking skills in solving geometry problems based on learning style: Grounded theory study. European Online Journal of Natural and Social Sciences, 11(3), 635–642.

Anwar, & Juandi, D. (2020). Studies of level visual thinking in geometry. Journal of Physics: Conference Series, 1470(1), 012095. https://doi.org/10.1088/1742-6596/1470/1/012095

Arcavi, A., & Weizmann. (2003). The role of visual representations in the learning of mathematics. Entomologia experimentalis et applicata, 103(3), 239–248.

Beaty, E., Dall’Alba, G., & Marton, F. (1997). The personal experience of learning in higher education: Changing views and enduring perspectives’, in Sutherland, P. (ed.). Adult Learning: A Reader., 150–165.

Charmaz, K. C. (2000). Constructing grounded theory: A practical guide through qualitative analysis. California: Thousand Oaks.

Cohen, L., Manion, L., & Morrison, K. (2007). Research methods in education. In research methods in education. Routledge Taylor & Francis Group. https://doi.org/10.4324/9781315456539-19

Creswell, J. (2015). Riset Pendidikan: perencanaan, pelaksanaan, dan evaluasi riset kualitatif dan kuantitatif [Educational Research: planning, implementing, and evaluating qualitative and quantitative Research]. Pustaka Belajar.

Culaste, I. C. (2011). Cognitive skills of mathematical problem solving of grade 6 children. International Journal of Innovative Interdisciplinary Research, 1, 120–125.

DePorter, & Hernacki. (2000). Quantum learning: Membiasakan belajar nyaman dan menyenangkan [Quantum learning: Getting used to comfortable and fun learning]. Kaifa.

Eisenberg, T. (1994). On the understanding the relucrance to visualize in mathematics. Zentralbalatt Fur Didaktik Der Mathematic, 109–113.

Glaser, B. G., & Strauss, A. (1967). The discovery of grounded theory: Strategies for qualitative research. Aldine.

Herizal, H., Suhendra, S., & Nurlaelah, E. (2019). The ability of senior high school students in comprehending mathematical proofs. Journal of Physics: Conference Series, 1157(2), 022123. https://doi.org/10.1088/1742-6596/1157/2/022123

Hoffer, A. (1981). Geometry is more than proof. The Mathematics Teachers, 74(1), 11–18. https://doi.org/10.5951/MT.74.1.0011

Huang, C. H. (2013). Engineering students’ visual thinking of the concept of definite integral. Global Journal of Engineering Education, 15(2), 111–117.

Jalinus, N., Ganefri, G., Syahril, S., Wulansari, R. E., Nabawi, R. A., Yunos, J. M., & Kiong, T. T. (2020). Comparison of learning style between engineering and non-engineering students in vocational education. International Journal of Innovation, Creativity and Change, 13(12), 283–294. https://www.ijicc.net/images/vol_13/Iss_12/131226_Jalinus_2020_E_R.pdf

James, W. B., & Gurdner, D. L. (1995). Learning styles: Implications for distance learning. New Directions for Adult and Continuing Education, 67, 19–32.

Kadunz, G., & Yerushalmy, M. (2015). The proceedings of the 12th international congress on mathematical education. The Proceedings of the 12th International Congress on Mathematical Education, 463–467. https://doi.org/10.1007/978-3-319-12688-3

Kang, R., & Liu, D. (2018). The importance of multiple representations of mathematical problems: evidence from chinese preservice elementary teachers’ analysis of a learning goal. International Journal of Science and Mathematics Education, 16(1), 125–143. https://doi.org/10.1007/s10763-016-9760-8

Kolb, A. Y., & Kolb, D. A. (2005). Learning styles and learning spaces: Enhancing experiential learning in higher education. Academy of Management Learning and Education, 4(2), 193–212. https://doi.org/10.5465/AMLE.2005.17268566

Kolb, D. A. (1984). Learning style inventory, revised edition. Hay Resources Direct.

Kolb, D. A. (2014). Experiential learning: Experience as the source of learning and development second edition. In pearson education. https://doi.org/10.1016/B978-0-7506-7223-8.50017-4

Kolb, D. A., Boyatzis, R. E., & Mainemelis, C. (2000). Experiential learning theory: Previous previous research and new directions. I n R. J. Sternberg & L. F. Zhang (Eds.), Perspectives on cognitive, learning, and thinking styles. NJ: Lawrence Erlbaum, 216, 1–40.

Lee, H., Kim, G., Hur, Y., & Lim, H. (2021). Visual thinking of neural networks: Interactive text to image synthesis. IEEE Access, 9, 64510–64523. https://doi.org/10.1109/ACCESS.2021.3074973

Mile, M. B., Huberman, A. M., & Saldana, J. (2014). Qualitative data analysis: A methods sourcebook. SAGE Publications.

MOE. (2001). Curruculum planning and development division. Mathematics Syllabus.

Polya. (1973). How to solve it. a new aspect of mathematical method. (p. 284). Princeton University Press.

Presmeg, N. (2006). Research on visualization in learning and teaching mathematics. Handbook of Research on the Psychology of Mathematics Education: Past, Present and Future, 205–235.

Riau, B. E. S., & Junaedi, I. (2016). Analisis kemampuan pemecahan masalah matematik siswa kelas vii berdasarkan gaya belajar pada pembelajaran PBL [Analysis of mathematical problem solving ability of class VII students based on learning styles in projec based learning] Unnes Journal of Mathematics Education Research, 5(2), 166–177.

Rokhima, W. A., Kusmayadi, T. A., & Fitriana, L. (2019). Mathematical problem solving based on Kolb’s learning style. Journal of Physics: Conference Series, 1306(1), 012026. https://doi.org/10.1088/1742-6596/1306/1/012026

Santrock, J. . (2007). Psikologi Pendidikan. In In Educational Psychology (3rd ed.). Salemba.

Sholihah, S. Z., & Afriansyah, E. A. (2018). Analisis kesulitan siswa dalam proses pemecahan masalah geometri berdasarkan tahapan berpikir van hiele [Analysis of students' difficulties in the process of solving geometry problems based on van hiele's stages of thinking]. Mosharafa: Jurnal Pendidikan Matematika, 6(2), 287–298. https://doi.org/10.31980/mosharafa.v6i2.317

Sholihah, U., Nusantara, T., Sa’dijah, C., & Susanto, H. (2016). The assessment of visual thinking of the concept of mathematics. International Conference on Education Universitas Malang, 920–925.

Solso, R. ., & Maclin, O. . (2007). Psikologi kognitif 8ed [Cognitif Psychology]. Erlanga.

Sternberg, R. (2008). Cognitif Psychology. Pustaka Belajar.

Stokes, S. (2002). Visual literacy in teaching and learning. Electronic Journal for the Integration of Technology in Education, 1(1), 10–19.

Strauss, A., & Corbin, J. (1998). Basics of qualitative research: Techniques and procedures for developing grounded theory. Thousand Oaks. Sage Publications, Inc.

Sumarni, S., & Prayitno, A. T. (2016). Kemampuan visual-spatial thinking dalam geometri ruang mahasiswa universitas kuningan [Visual-spatial thinking ability in space geometry of university of kuningan students]. JES-MAT (Jurnal Edukasi dan Sains Matematika), 2(2), 81-100. https://doi.org/10.25134/jes-mat.v2i2.349

Van de Walle, J. A. (2004). Elementary and middle school mathematics : Teaching developmentally.

Vermunt, J. D. (1992). Learning styles and guidance of learning processes in higher education. Lisse Swets and Zeitlinger.

Wicaksono, A. B., Chasanah, A. N., & Sukoco, H. (2021). Kemampuan pemecahan masalah geometri berbasis budaya ditinjau dari gender dan gaya belajar [Culture-based geometry problem solving skills in terms of gender and learning style]. AKSIOMA: Jurnal Program Studi Pendidikan Matematika, 10(1), 240-251. https://doi.org/10.24127/ajpm.v10i1.3256

Wijayanti, R. W., Sutopo, & Pambudi, D. (2017). Profil kesulitan siswa dalam memecahkan masalah matematika materi pokok bangun ruang sisi datar ditinjau dari kecerdasan visual-spasial siswa [The profile of students' difficulties in solving mathematical problems of the subject matter of building a flat side room in terms of students' visual-spatial intelligence]. Jurnal Pendidikan Matematika Dan Matematika (JPMM) Solusi, 1(4), 27–34.

Wu, M., & Adams, R. J. (2006). Modelling mathematics problem solving item responses using a multidimensional IRT model. Mathematics Education Research Journal, 18(2), 93–113. https://doi.org/10.1007/BF03217438

Young, T. (2010). How valid and useful is the notion of learning style? A multicultural investigation. Procedia - Social and Behavioral Sciences, 2(2), 427–433. https://doi.org/10.1016/j.sbspro.2010.03.037

Yuan, S. (2013). Incorporating pólya’s problem solving method in remedial math. Journal of Humanistic Mathematics, 3(1), 96–107. https://doi.org/10.5642/jhummath.201301.08

Yuwono, M. R. (2016). Analisis kesulitan belajar siswa kelas vii smp dalam menyelesaikan soal materi segitiga dan alternatif pemecahannya [Analysis of the learning difficulties of grade vii junior high school students in solving triangular material problems and alternative solutions]. Magistra, 28(95), 14–25.

Downloads

Published

31-07-2023

How to Cite

Anwar, A., Turmudi, T., Juandi, D., Saiman, S., & Zaki, M. (2023). Level of visual geometry skill towards learning style Kolb in junior high school. Jurnal Elemen, 9(2), 542–557. https://doi.org/10.29408/jel.v9i2.15121

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.