Level Berpikir Geometri Peserta Didik Berdasarkan Teori Van Hiele pada Materi Bangun Ruang Sisi Datar

Authors

  • Anna Cesaria STKIP PGRI Sumatera Barat
  • Tatang Herman Departemen Pendidikan Matematika, Universitas Pendidikan Indonesia
  • Jarnawi Afgani Dahlan Departemen Pendidikan Matematika, Universitas Pendidikan Indonesia

DOI:

https://doi.org/10.29408/jel.v7i2.2898

Keywords:

polyhedral, students’ geometry ability, Van Hiele’s theory

Abstract

According to Van Hiele, in understanding geometry, students need to understand five stages, namely stage 1 (introduction stage), stage 2 (analysis stage), stage 3 (sequencing stage), stage 4 (deduction stage), and stage 5 (accuracy stage). Each student has different geometric thinking abilities. This study aims to examine the geometric abilities of junior high school students in the material of flat-sided geometry according to Van Hiele's Theory. This research belongs to the type of qualitative research with a case study design. It was conducted at three schools in Padang, West Sumatra, Indonesia. The subjects were students of SMP Negeri 1 Padang, SMP Negeri 7 Padang, and SMP Negeri 25 Padang. Data collection was carried out using tests, interviews, and documentation. Data analysis was carried out with the stages of data reduction, data presentation, and data verification or drawing conclusions. The data originality technique was carried out with the triangulation technique, where the researcher compared the test data with the results of interviews with students. Of the 94 students (male = 38, female 56) tested based on the geometric thinking level of Van Hiele Theory, 92.55% of the students reached the Van Hiele thinking stage at the visualization level. As many as 45.74% of students reached the level of geometric analysis, and 6.38% of students reached the level of abstraction. For the level of deduction and accuracy, no one has been able to solve the problem. The results obtained in this study are that most students are still at stages 1 and 2, unlike van Hiele's opinion, which revealed that the level of geometric thinking for junior high school students is at level 3. According to the study results, it is essential to carry out further checks on the level of geometric thinking of junior high school students in other areas.

References

Abdussakir, A. (2009). Pembelajaran geometri sesuai teori Van Hiele. (April 2012). https://doi.org/10.18860/jt.v2i1.1832.

Abu, M. S., & Abidin, Z. Z. (2013). Improving the levels of geometric thinking of secondary school students using geometry learning video based on Van Hiele theory. International Journal of Evaluation and Research in Education (IJERE), 2(1), 16-22. https://doi.org/10.11591/ijere.v2i2.1935.

Budiman, H. (2015). Analisis kemampuan berpikir geometri mahasiswa pendidikan matematika. Jurnal Prisma, 4(8), 28-40.

Burais, F. F., & Husna. (2018). Peningkatan kemampuan pemecahan masalah geometri melalui pembelajaran kooperatif berbasis teori Van Hiele. Jurnal Peluang, 6(2), 52–57. https://doi.org/10.36294/jmp.v2i2.208.

Burger, W. F., Shaughnessy, J. M., Education, M., & Jan, N. (1986). Characterizing the Van Hiele levels of development in geometry. Journal for Research in Mathematics Education, 17(1), 31–48. https://doi.org/10.2307/749317.

Cesaria, A., & Herman, T. (2019). Learning obstacle in geometry. Journal of Engineering Science and Technology, 14(3), 1271–1280.

Clements, D. H. (2003). Teaching and learning geometry. State University of New York at Buffalo.

Creswell, J. W. (2012). Educational research: Planing, conducting and evaluating quantitative research (4th editio). Boston, MA: Pearson Education, Inc.

Fitriyani, H., Widodo, S. A., & Hendroanto, A. (2018). Students’ geometric thinking based on Van Hiele’s theory. Journal of Mathematics Education, 7(1), 55–60. https://doi.org/10.22460/infinity.v7i1.p55-60.

Haviger, J., & Vojkůvková, I. (2015). The Van Hiele levels at Czech secondary schools. Procedia-Social and Behavioral Sciences, 171, 912–918. https://doi.org/10.1016/j.sbspro.2015.01.209.

Hock, T. T., Tarmizi, R. A., Yunus, A. S., & Ayub, A. F. (2015). Understanding the primary school students’ Van Hiele levels of geometry thinking in learning shapes and spaces : A Q-methodology. 11(4), 793–802. https://doi.org/10.12973/eurasia.2015.1439a.

Khoiri, M. (2014). Pemahaman siswa pada konsep segiempat berdasarkan teori Van Hiele. (November), 262–267.

Lestariyani, S., Ratu, N., & Yunianta, T. N. H. (2014). Identifikasi tahap berpikir geometri siswa SMP Negeri 2 Ambarawa berdasarkan teori Van Hiele. Satya Widya, 30(2), 96-103. https://doi.org/10.24246/j.sw.2014.v30.i2.p96-103.

Ma, H., Lee, D., & Lin, S. (2015). A study of Van Hiele of geometric thinking among 1 st through 6 th graders. 11(168), 1181–1196. https://doi.org/10.12973/eurasia.2015.1412a.

Mamolo, A., & Ruttenberg, R. (2015). Developing a network of and for geometric reasoning. ZDM, (April 2016). https://doi.org/10.1007/s11858-014-0654-3.

Mason, M. (2009). The Van Hiele levels of geometric understanding. ColeccioÌn Digital Eudoxus, 1(2).

Muhassanah, N., Sujadi, I., & Riyadi. (2014). Analisis keterampilan geometri siswa dalam memecahkan masalah geometri berdasarkan tingkat berpikir Van Hiele. Jurnal Elektronik Pembelajaran Matematika, 2(1), 54–66.

Nopriana, T. (2014). Berpikir geometri melalui model pembelajaran geometri Van Hiele. Delta, 2(1), 41–50.

Özerem, A. (2012). Misconceptions in geometry and suggested solutions for seventh grade students. Procedia - Social and Behavioral Sciences, 55, 720–729. https://doi.org/10.1016/j.sbspro.2012.09.557.

Ramlan, A. M. (2016). The effect of Van Hiele learning model toward geometric reasoning ability based on self-efficacy of senior high school students. Journal of Mathematics Education, 1(2), 62–71.

Salifu, A. S., Yakubu, A.-R., & Ibrahim, F. I. (2018). Van Hiele geometric thinking levels of pre-service teachers’ of E.P. college of education, Bimbilla-Ghana. Journal of Education and Practice, 9(23), 108–119.

Sariyasa. (2017). Creating dynamic learning environment to enhance students’ engagement in learning geometry creating dynamic learning environment to enhance students’ engagement in learning geometry. Journal of Physics: Conference Series, 755(1), 011001. https://doi.org/10.1088/1742-6596/755/1/011001.

Sulistiowati, D. L., Herman, T., & Jupri, A. (2019). Student difficulties in solving geometry problem based on Van Hiele thinking level. Journal of Physics: Conference Series, 1157(4), 042118. https://doi.org/10.1088/1742-6596/1157/4/042118.

Usiskin, Z. (1982). Van Hiele levels and achievement in secondary school geometry. CDASSG Project, 66, 37–39.

Usman, H., Yew, W. T., & Saleh, S. (2019). Effects of Van Hiele’s phase-based teaching strategy and gender on pre-service mathematics teachers’ attitude towards geometry in Niger State, Nigeria. African Journal of Educational Studies in Mathematics and Sciences, 15(1), 61–75. https://doi.org/10.4314/ajesms.v15i1.6.

Vojkuvkova, I. (2012). The Van Hiele model of geometric thinking. WDS’12 Proceedings of Contributed Papers, 1, 72–75.

Yudianto, E., Sugiarti, T., & Trapsilasiwi, D. (2018). The identification of Van Hiele level students on the topic of space analytic geometry. Journal of Physics: Conference Series 983(1), 012078. https://doi.org/10.1088/1742-6596/983/1/012078.

Downloads

Published

13-07-2021

How to Cite

Cesaria, A., Herman, T., & Dahlan, J. A. (2021). Level Berpikir Geometri Peserta Didik Berdasarkan Teori Van Hiele pada Materi Bangun Ruang Sisi Datar. Jurnal Elemen, 7(2), 267–279. https://doi.org/10.29408/jel.v7i2.2898

Issue

Section

Articles

Similar Articles

<< < 5 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.